File No.

GC28-2001-

Systems Reference Library

IBM Time Sharing System

Command System User's Guide

This is a reference book for users of the commands that
are part of the IBM Time Sharing System (TSS). The
command systemr gives the user the akility to (1) con-
Struct, execute, and debug programs; (2) create, modi-
fy, copy, and share data sets; (3) enter data into and
retrieve data from the system; and (4) modify and add
to the system-supplied commands.

Commands that are used exclusively ky the system opera-
tor, system manager, system administrator, and system
programmer are not presented in this book.

Three types of information make up the major part of
this reference: basic information for the new user,
examples, and command descriptions. Part II contains
seven sections, and each section descrikes a different
category of commands. Introductory material in Part II
is provided to give the new user of the conrand systerm
general knowledge of the commands. Part III contains
format illustrations and descriptions of the commands.
Parts II and III alsc contain examples that show ways
of using the commands.

Before reading Comrand System User's Guide, you should
have general knowledge of TSS. For an introduction to
TSS see IBM Time Sharing System: Concepts and Facili-
ties, GC28-2003. If You enter commands through a ter-
minal, you should be familiar with the terminal. See
IBM Time Sharing System: Terminal User's Guide, Gc28-
2017 for instructions onm operating the IBM 2741 Commu-
‘nications Terminal and the IBM 1052 Printer-Keyboarad.
A list of publications related to TsS appears in the
IBM Time Sharing System: Addendum, GC28-2043 .

S360-36
9

Tenth Edition (Auqust 1976)

This is a major revision of, and makes obsolete, GC28-2001-8.
Extensive editorial and technical changes have been made in
this edition. Among the modifications to the system that are
reflected in this publication are the following:

s Addition of the following commands:

BLIP EJECT FTNH cDC PLIOPT
BLIP? FILEDEF HASM oSsbD? SPACE
COBOL FILEREL LL OSRUN ‘TRANSLAT

* Changes to the SCRATCH and HOLD options of the RELEASE
command

e Clarified unit type parameters for several commands

This edition is current with Release 2.0 of the IBM Time
Sharing Systems/370 (TS5/370), and remains in effect for all
subsequent versions or modifications of 1SS unless otherwise
noted. Significant changes or additions to this publication
will be provided in new editions of Technical Newsletters.

Requests for copies of IBM putlications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader’s comments. If the form has been removed,comments may
be addressed to: IBM Oorporation, Time Sharing System, Dept.
B80M, 1133 Westchester Avenue, White Plains, New York 10604.

@© copyright Internaticnal Business Machines Corporation 1968,
1969, 1970, 1976

PREFACE

This is a general-purpose reference manual
for the IBM Time Sharing System (TSS) com-
mand system. Since users of this kook have
varying degrees of knowledge about the com-
mand system, there are several levels of
information in it. The book is organized
as follows:

* Part I explains the basics of the com-
mand system (for example, what a com-
mand statement is) and the method of
describing commands.

* Part IT is divided intc six sections,
each describing one group of commands.
This contains general information about
the commands.

¢ Part XII contains format illustrations
and descriptions of the commands. The
commands appear in alphabetical order.
Examples of their use are providsd.

* The appendixes provide supplementary
reference material, for example, bulk
1/0 procedures, system-supplied tables
and defaunlt values, special codes for
printer and punch control, and detailed
information about some commands.

1f you are a new user of the command sysS-
tem, you should read Part II to get back-
ground knowledge about the commands. If,
in addition, you are a new user of TSS,
read IBM Time Sharing Svystem: Concepts and
Facilities, GC28-2003 an introducticn to
the system. When you enter commands into
the system, enter them as shown in the for-
mat illustrations in Part III. If you are
entering commands at a terminal and are not
familiar with the terminal, read IBRM Time
Sharing System: Terminal User's Guide,
GC28-2017. You may have to review the oom-
mand descriptions and examples that are in
Part IIX

several times while you are learning the
system.

&s you become familiar with the command
systew, you may use only the format illus-
trations in Part II. If you need a quick
reference, you may go immediately to Appen-
dix G.

Comwands that are used exclusively by a
system operator, administrator, manager, or
programmey are not described in this book.
For information about these cormands see
IBM Time Sharing System: Operator’s Guide,
GC2B~-2033, IBM Time Sharing System: Mana-
ger's and Administrator’s Guide, GC28-~202%,
and IBM Time Sharing Systems System Pro-
grammer’'s Guide, GC28-2008.

A publication list appears in IBM Time
Sharing System: Addendum, GC28-2083. Some
other publications in the IBM Time Sharing
System library that you may need to use, in
addition to those that are listed above,
ares

System Messages, GC28-2037

guick Guide for Users, GX28-6400

Assenbler Language, GC27-2000

Assewbler Programmer®s Guide, GC28-2032

Assembler User Macro Instructions,
GC28-2004

Introducing T88: A Primer for FORTRAN
Users, GC20-2048

FORTRAN Programmer®s Guide, GC28-2025

Linkage Pditor, GC28-2005

PL/Y Programmer®s Guide, GC28-2049

PART I: THE CCMMAND SYSTEM
Command Format and Notation

Command Format Illustrations

Command Function and Use . .
General TermsS . v v o o o« « o

Command Statement
Operand Representation .

s & ¢ @

L)] ’ .
L]

Use of Metasymbols . . .

Operation Format
Operand Format
Operand Descriptions . . .

LN I B I ')
L

PART II: USE OF COMMANDS

SECTION 1: TASK MANAGEMENT . . .

Communicating with the System
Resource Contrcl

Conversational Mode & o .

Conversational Task Initiation
Conversational Task Execution .
Conversational Task Interruption
Conversational Task Termination
Conversational Task Output . .

Nonconversational Mode

Nonconversational SYSIN Data Set

Nonconversational Task Initiation

Nonconversational Task Execution

Nonconversational Task Termination

Nonconversaticnal ABEND Control
Nonconversational Task Output .

Switching Modes

SECTION 2: DATA MANAGEMENT . . .
Data Set Management
Text Editing

Data Editing
Source Input
Bulk OCutput

General Termwms . . . - e e
Invoking the Text Edltor « o

Creating a Region Data Set .

Creating a Line Data Set . .
Editing Data Sets
Concatenating Inrut Records . .
Entering Hexadecimal Data . . .
Using the Text Editor . .

SECTION 3: PROGRAM MANAGEMENT . .
Language Processing . « « « « « =

Steps in Language Processing .
Listing Data Sets

Program Control

Use of Conmmand Statements . . .
PCS Applications . . . - -
Types of Operand Spec1f1cat10n
Operand Definitions

Synonyms . . . - - -
Examples Using PCS Commands -

SECTION 4: COMMAND CREATION . . .
Command Procedure . . . o« o o = .

iv

Procedure Library

L]

LI S Y R D Y D Y T

L I I T D DN I T T Y T] LI B T]

L] .

L] ¢ & & 8 s 0

L]

s & 5 8

& & & & s 5 & @

L]

¢ & 0 0 % é s ¥ 5 s 0

¢ & & 0 2 6] & » & 4 8 s s & 4 e 5 8 4 3 ¢« 8 8 8 ¥ 5 & & v & &

. & 0 &

LI I B I N A N

L T T)

¢ & ¢ & & & & & & @

L]

. 8 8 8 s

LI I N I I T T I T T R 'Y

s 8 & 0 5 ¥ 5 & & b

[. L N . s B 1]

CONTENTS

-
»
(-] &] oUW N

.
s 0 0 0
[
o

8 o b & & 9 s
:
Y
(=)

L]
.
[ory
0

]] [] a .] [3 [£)
[]) [] L[] [] L[] [] L]
a [] 1] [) . [} []

X s

~ O W

1]

‘.
.
wN
[V}

LR Y
I R S
.
w
[8}

L T R R T S S S S {
L R R S S R T T
L T T S S S S
w W
~ o

.
wn
[+]

Command Procedure Definition -- PROCDEF
Specifying Dummy Operands
Entering Procedure Text . « - . « . .
Terminating Procedure Definition . . .
Nested PROCDEFS © « v v = « o o o =
Nested Procedures . . . o« o« o . o .

Sharing User-Written Commands
Editing Procedures . . . o v v o o« o o o
Diagnostic Messages During Execution . . .
Object Program Definition -- BUILTIN
Operand Resolution and Substitution
Analysis of Calling and Procedure Operands

Positional and Keyword Notation .
Defaults e s e e e e o
Generation of 0perand Equivalences
Operand Substitution
PROCDEF Examples . . v v v o o o o «

-

-

s & 0 4

SECTION 5: MESSAGE HANDLING « & @ v o o o « o
Message Generation and Reception .
Message Explanation
Message Generation .
Message Filtering . .
Message File Construction
Reference Message . . .
Message Types and Format . . .
Word Explanation Scope

]
.
]
.
]

*
[]
.
[
L]

. @ -

[I I)
.
L]
L I)
L I B |
LI I S R
L)
s

SECTION 6: THE USER PROFILE . v v + & o .« . .
Synonyms and Defaults
PROFILE Command ¢ v v ¢« & 2 o o o o o o« o =
Implicit Operands . . . v v v v o o o o o @

SECTION 7: PROGRAM PRODUCT LANGUAGE INTERFACE
PROGRAM PRODUCTS UNDER TSS e v v = o o o
program products supported

PROGRAM PRODUCT LANGUAGE INTERFACE COMMANDS

PART III: COMMAND LESCRIPTIONS . . . e ® o e
ABEND COmMmMand . ¢ « v v v o o o =« o o o
ABENDREG CONTANA & v @ @ w « o s o o o 4
ASM Command 4 4 a e e e e e e
AT Command 4 v 4 4 4 o o o o .
BACR Command . . . v 4 v w o o o o o . -
BEGIN Command . . v v v v w o o w o o o .
BLIP Command . . . & v 4 o v o w o o o .
BLIP? Command . . . ¢ & v v v o v o o o .
BRANCH Command . . ¢ o v @ @ o w o o o .
BUILTIN Corrand - “ e e e om s e e e =
C, CA, and CB Commands “ e e s s = e e a
CALL command 4 4 4 4 i v oe e e
Direct Call & v 4 v v o o o . - .
CANCEL Command . . . v & w @ o o o o o .
CATALOG Command . . . o« . . .
CB Command <« .
CDD Command & . . .
ChS Command
CBGPASS Command
CLOSE Command
COBCL Command o« v v o o o « .
CONTEXT Comrmand . . o o . . .
CORRECT Command
DATA Command
DDEF Command
DDNAME? Corrand . . .
DEFAULT Command
DELETE Command . . v & v v v o o o o o 4
DISABLE, ENABLE, POST, and STET Commands

L]
[}
L]
L]
[}
L]

L] . LI LN) L] L] s] [
L] L] L]
[[]] LI | L L] . 3 .
. . .
L]
]

LI A]
.
.
L}
.
L
.
L]

. e e & o = . e

& & 5 8 & 3 5 & &k & a4

$ ¢ s 3 4 3 & & 8 & s

LI S I]

L R T L R S S Y

& & T 0 & & & s

L N B D D R R S] [

.

LI A N L Y I D B R R T T S PR

& & ¢ 5 s @

¢ ¢ 5 & & & & 2 2 s & @

t & ¢ » @

¢ & 6 o 2
(=]
()

s e & ¢ » & & 8 & & o & &
o ~N ~d wd wd o
[[N N o [}

s
o]
=

s & a3 @
=23
£

DISPLAY Comrmand
DMPRST Corrand

DSS ? Command .
DWMP Command -
EDIT Command .
EJECT Command .
ENABLE Command

END Command . .
ERASE Comrand .
EVV Command . .
EXCERPT Comrand
EXCISE Command

EXECUTE Comrmand
EXHIBIT Command
EXIT Command .
EXPLAIN Command
FILEDEF Command
FILEREL Command
FTN Command .
FTNH Command .
GAV Command . .
GDV Command . .
GO Command . .
GOT O Command .
GSV Command . .
BASM Command .
IF Command . .
INSERT Conmand

JOBLIBS Cormand

e o e e =
e e » e e
e s & e .
e » e o =
e & ¢ e -
e ® e @ o
- e o = e
« ® o e e
e o+ e e e
*« e & @
e ® e ® =
e e o e =
« ® o & =
« ® ® ® e
e e o e o
= e o ®
e ® o @ e
e e o o =
« o e w =
« = &% ® e
e o o ® e
« o o = =
* * e e e
e w e e e
« * o e e
e o o e e
- s e a =
« * s+ e e

K, KA, and KB Commands .

KEYWORD Comrand
LINE? Command .
LIST Command .
LL Command . .
LNK Command . .
LOAD Command .
LOCATE Comrrand

LOGCFF Cormand

LOGCN Command .
LTDS (List TAPE
MCAST Command .
MCASTAB Command
MODIFY Cormand

NUMEER Conmand

ODC Command . .
OSDL? Command .
OSRUN Command .
PC? Command . .
PERMIT Command

PLI Command . .
PLICPT Command

POD? Cormand .
POST Command .
PRINI' Commrand .
PRMPT Command .
PROCDEF Commrand
PROFILE Command
PUNCH Comrand .
PUSH Comrmand .
QUALIFY Comwmand
REGION Comrmand

RELEASE Comrmand
REMCVE Command

RET Command . .
REVISE Conmand

RTRN Comrmand .
SECURE Cormand

SET Command . .

vi

Datasets)
e e v a e

@ &5 & 5 8 0

¢ ¢ & 4

L] [[] . L] ¢ &

. =
. .
-
. .
- =
. .
- -
- -
. .
. .
“« .
. .
. -
. -
“ .
- -
- .

-
. .
- .
. .
« =
- -
. -
- .
. o
. =
- .
. .
- .
-
. -
.
-
- .
- -
- -
. .
-
and
.
“ -
- .
- -
- e
. .
. .
-
« =
- .
. o
o .
- .
- .
. -
. -
- .
.
- -
. .
. .
. .
- e
. .
- -
- e
- =
.- -

¢ & 5 8 s e &

LI . . L]

. LI L) L]

[] . s L] [. L]] . @2] . L]] L)

[}]] L]

s &2 » 0 s

. [] . ¢ B

. . L] . . L[] *

.

. [[. .

LI N I N I

LI SR L R D D D DAY DR T DY N N Y D T T T 'Y

& & 8 4 & 5 3 &

[}

4 & & & 2 s 3

[]] * & & . s 3 .]

LN B D D D T R B D I

¢ & ¢« 8 4

8 & & s

¢« ¢ & & 2 LI N |

& & 8 & s ¢ 0

LI N

& 5 0 & @

L]

¢ & o« 8 4 &

. . . L] L] .

. 140
<142
.145
- 147
.148
.150
-150
.151
.152
<154
.154
-156
.157
.158
.160
.161
-163
.164
.164
<167
.168
.169
-169
.170
.172
172
-175
-176
-178
-178
.179
-180
-182
-184
.185
.187
.188
-189
-190
-192
.192
.195
-197
-202
.204
.205
.205
.205
<206
.208
.213
.215
. 217
.218
.221
.221
. 222
«223
« 225
.226
. 227
.228
.231
232
.233
. 234
.235
. 236

- Output Options

SHARE Comrand
SPACE Comrand
STACK Command
STET Command

STOP Corrmand

STRING Command
SYNCNYM Cormand
TIME Command .

TRANSLAT Command
TRAP Command (System 37

TV (Tape to VAM) Command
UNLCAD Comwand
UPDATE Command
USAGE Command
VT (VAM To Tape) Command
VV (VAM to VAM) Command .
WT Command
ZLOGON Command . ., . . .

¢« & 8 e
. . L

[}
¢ o 8 2 s

-
-
-
-
-
-
-
-

L N A Y]
LA Y N R T Y
& 8 8 3

0

LI I I I

LI A Y D N Y

ly)

LI B~ B L Y T I R S S
L T T S S Y

LI L B R B

L]
[. 1] 1] L]] [

8 & & 8 8 8 5 & 8 8 0 9 & 2 []

L N Y Y Y) ¢ ¢ a2

APPENDIX A: BULK INPUT FROM MAGNETIC TAPE .
Information Needed by the System Operator

Tape Format Requirements .

® e - e

.APPENDIX B: BULK INPUT FROM CARD DECKS

Nonconversational SYSIN Data set .

Data-Card pata set . . .
Data Descriptor card . .
%ENCDS Card . . .,

APPENDIX C: PROTOTYPE PROFILE
Table of System Defaults . .
Basics of Translation . . . -
Character Switch Table . o e

APPENDIX D: CONTROL CODES AND

APPENDIX E: DETAILED DESCRIPTION COF

® o =

s o
L T Y
L 2N T S Y
LI T T

CHARACTERS

APPENDIX F: CURRENT LINE POINTER . .

APPENDIX G: COMMAND FORMATS .

APPENDIX H: KEY TO VALUES DISPLAYED

APPENDIX I: PL/I COMPILER OPTIONS

Control Options
PREPROCESSOR Options
Input Options

¢ & & & 3
L N
8 6 ¢ 8 s

Listing Options . . .
Dummy Options . . .

APPENDIX J: COBOL/VS COMPILER

* o =

-
-
-

-
-

OPTICNS

LI I I |

& & & 2 & 3

L] - .] . [.

¢ & ¢ & & 2 9

& 8 & 5 2

lol.o'll"‘t‘.!lll

. s ¢ .

DDEF CCMMAND

. - [] L] L] .] . . (] LI]

Elclllilillltll

¢ 8 B3 3

£ s 35 4 3 o

ltllll!l.lll‘!l.ll

4 ¢ 8 ¢ .

$ 0 v s

BY USAGE COMMAND

AFPENDIX K: FORTRAN IV (H EXTENDED) CCMPILER OPTIONS

APPENDIX L: PL/I OPTIMIZING COMFILER OPTIONS

INDEX

" e & e

-

-

Gl.l.ll‘l!l'lla.l'

L S R Y L}

2 s ¢

] . [] [[L] [L] . L] . . . [] . (] [} [] L] . L] .

¢ 3 v s

LI Y I R T 1

- 237
-239
239
- 240
.240
241
- 241
- 243
<243
-« 245
- 247
-249
«250
«251
- 251
254
-256
- 258

- 260
-260
.261

-262
«262
262
-263
- 265
« 266
«266
-270
-282
. 284
. 286
. 296
-297
.303
.305
.306
-306
-307
307
-308
-309
-310
- 316
-319

«329

vii

Table
Table

Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

> W
P

Table 17.

Table
Table
Table
Table
Table
Table
Table
Table
Table
“aple
Table
Table
Table
Table

Figure

Figure

Figure
Figure

Figure

viii

TABLE

Task management commands and their functions . .
Commands for SYSIN device and character set
selection

System responses to attention interruptions . . .
Data set management commands and their

functions L. ...
Text-editing commands and their functions
Data-editing commands and their functions . . .
Bulk output commands and their functions
Language-processing commands
PCS commands and their functions
Generation of operand equivalences .,
Indication of operand resolution
Filter codes v v v v . v ...
Message content
User profile management commands
Implicit operands
Characteristics of datasets used by ¢ps1
Type of prompt after the EDIT command1
PLCLPT options and system defaults2
Command system defaults2
Prototype input character translation table . . .2
Prototype output character translation table . .2
Printer codes ¢ v v v v 4 4w e e e a2
FORTRAN control characters for the printer . . .2
IBM 2540 punch machine codes2
FORTRAN control characters for the punch2
Format illustration of the DDEF command2
Data set organization requirements2
Typical use of DDEF operands2
Command format summary2
Explanation of output from the usage comman . .3
Formats of compiler options, abbreviations,
and standard defaults3
FIGURES

Flow of control from a nonconversational
task to a data set that continues the

task to normal termination 18
Format of output from the POD? command for
each member217

Card deck for a non-conversational task . . .263
An example of a SYSIN data set, showing input

data cards and the end-of-data card263
An example of the data-card data set263

S

PART I: THE COMMAND SYSTEM

The command system is the principal means with which you communicate
with the IBM Time Sharing System (TSS). With the command system, you
can create, execute, and debug your programs; you can create, alter, and
destroy collections of data (known as data sets); and You can modify
System commands or write your own commands. EFach command acts as an in-
struction to the system; that is, it tells the System what operation you
want performed and on which data You want to operate.

The command system can be used in two modes: cenversational and noncon-
versational. In conversational mode you interact with the system at
your terminal. BAs you enter each command, it is executed by the systen.
In nonconversational mode, the system executes one or more commpands that
exist in a prestored data set. Each command is executed as it is
entered into the system from this data set, but there is no interaction
between you and the System through the terminal. 1In either mode, if you
have not designated that You are finished using the system, you are pro-
mpted for another command.

The system commands have been grouped into seven categories. These cat-
egories and the sections in which they are described in part II are
listed below:

¢ Task management (see Section 1)

¢ Data management (see Section 2)

Bulk output (see Secticn 2)

* Prograr management (see Section 3)

¢ Command creation (see Section 4)

¢ Message handling (see Section 5)

* User profile (see Section 6)

* Program Product Language Interface (see Section 7)
Task management commands allow you to initiate, control, and terminate
the orocessing of your task. These commands do not manipulate data, nor
do they create programs; they are used to start and to stor execution of
your task.
Data management commands allow YOou to create and ranipulate data sets.
These data sets can contain programs to ke compiled, data to be main-

tained, or commands to be executed.

sulk output commands allow you to initiate output oreraticns on system
printers or runches.

Prograr management commands allow You to initiate and control the execu-
tion of your programs, to initiate compilation cr assenkly of data sets
created with data management commands, and to debug ycur Frcgrams after
they bhave Leen compiled or assembled.

Command creation commands allow you tc create ycur cwn ccrmands to sup-
plerent or rerlace system commands.

Fart I: The Ccmrand System 1

Message handling commands allow you to create your own message file frorw
which messages are issued toc your task. You can supplement the system's
message file, create your own new messages, and display messages for
review or clarification.

User profile management commands allow you to control the environment in
which your task executes. You can alter values for operands; you can
change the translation tables; and you can choose whether to make your
changes permanent or temporary.

The Program Product Language Inter face (PPLI) allows you to execute the
0S/VS program product compilers via interface modules.

Note: Unless otherwise noted, the commands described in this book may
be used in either conversational or nonconversational operations.

This publication descrikes the command system for use in doing produc-
tive work. The system maintainence commands are described in System
Programmer 's Guide, Operator's Guide, and Manager's and Administrator's
Suide.

COMMAND FORMAT AND NOTATION

The basic format of a command is:

¥ T
}Operation|Operand
1 4

[3 T

|conmand |one operand; several operands delimited by commas or tabs;
|name |field may be blank

N R i

R S

The operation field contains a command name, such as CANCEL or EXECUTE,
that identifies the command and its requested action. The command nane
may not exceed eight characters or contain an embedded klank. The
operand field contains any information required by the command.

While the operation field specifies the action to be performed, the
operand field indicates the elements upon which the command is to act.
The operand field may be blank or may contain several coperands, depend-
ing on the requirements of the operation. Multiple operands in an
operand field must be separated by commas or taks. Blanks may be used
between operands, in addition to the delimiter, but they are ignored by
the system. For example:

a,b,c
a, b, c~
or
a (tab) b, c¢

yield identical results when the command is executed. The operand field
must be separated from the operation field by either a tab or one or
more blanks.

Note: In the examples throughout this publication, commas are used as
operand segarators.

COMMAND STATEMENT

& command statement is one command or a series of commands that are
separated by semicolons. The system recognizes a command statement as
one SYSIN record. Normally, one command statement is written on one
line; however, when one command statement is written on more than one

line, you must end each line that is being continued with a hyphen. You
may comrent a command, kut the comment must be separated from the cowm-
mand by a semicolon and the comment must be written between single quo-
tation marks. (If several commands are used in the command statement,
there must ke a semicolon kefore the comment and another semicolon
afterthe comment.) Comments do not affect execution. Comments can ke
used in places other than on a command statement. You may begin a com-
ment after a system underscore, as follows:

_‘'this is a comment'’

There are three types of command statements: dynamic, immediate, and
conditional. & dynamic command statement contains an AT command, which
specifies the location where the commands in the statement are executed.
An immrediate command statement does not contain an AT command and is
executed when it is entered into the system. A conditional command
staterent (dynamic or immediate) ccntains an IF conrand, and the part of
the statement following IF is executed only when the condition stipu-
lated by IF is true. The following are examples of immediate (1, 2, and
3), dynamic (4), and conditional (5) command statements:

1. delete myds; ‘erase the catalog entry for myds'; cancel 3219 ;-
*eliminate print task'

2. execute datal; catalog data2,u,u;logoff

3. wt dsname=abc,dsname2=xyz,volume=1233,factor=3,startno=6, endno=35,~
prtsp=edit;"output data set®

4. at pgm.a;display x
5. if x>0; display x; 'test variable x°

The conrands are descriked and some examples cf the use of commands are
given in Part III. See also "Use of Command Statements™ in Section 3 of
Part II.

OPERAND REPRESENTATION

The syster can determine the value of a specific operand in one of two
ways: (1) from the position of that operand within a series of operands
or (2) from a descriptive keyword preceding the operand value. When
positional operands are used, they must appear in the order that is
shown in the command format illustration. If a positional operand is
omitted and another positional operand is written following the omitted
operand, the delimiter (that is, comma or tab) that would have followed
the omitted operand must ke used to indicate the relative position of
the operand that is included. For example, pcsitional cperands a, b,
and ¢ may ke written as:

a,b,c a,,c a,b a .b,c b +sC (blank}
Keywords may appear in any order, in the general form:

KEYWORD=value
where KEYWORD is the name of the operand and is shown in the illustra-
tion in all-capital letters, and value is the actual value of the

operand. [Celimiters are not required to indicate omitted keyword
operands. When you enter keyword operands in positional notation, you

Part I: The Command System

can omit the keyword. You then follow the rules for entering operands
in positicnal notation.

Keyword and positional representation of orerands may ke used simul-
taneously in the same operand field. For example, assuming three
operands with keywora representations expressed as A=x, B=y, and C=z,
the operand field may be represented as:

A=x,B=y,C=z A=x,y,2 A=x,B=y,z Xx,C=z,B=y x,C=z B=y
When the keywerd form is used, the same keyword operand can be repeated

sSeveral times in the operand string; however, the system uses the last
value specified in the operand string for a given operand. For exanple:

command a=x,b=y,a=u,c=z, a=p

In this example, the keyword operand A takes a final value, A=P. If a
value is given to the same operand in both keyword and positional repre-
sentation, the last value encountered in the command statement is used
when the comrmand is executed. For example:

X,c=1,y,b=u

This cormand executes as if the values were:

XeU,y

Operands are resolved from left to right; that is, the last value
~2ncountered for a given operand is used when the command is executed.
Again, if a command format shows three keyword operands:

d

) T
|OperaticnjOperand
b i

L

]
| COMMAND |A=term,B=value,C=name
L L -

the command can be entered as:

command x,y,z,b=p

The operand specified by B is resolved as E=p. The comrand executes as:
corrand x,p,z

A self-defining keyword has all the properties of a normal keyword. 1In
addition, the keyword may appear in a command by itself, without an
equal sign and value; in this case the user will be passed the single
character 'Y'. If the keyword is entered by itself but prefixed with
"NO', the user will be Fassed the single character '™w'. For examgple,
the following two commands pPass the same parameters to the user:

PROFILE TASK=N
PROFILE NOTASK

The examples are a guide; they do not contain all possibilities for
these operands. Operand resolution is descrited more fully in Section 4
of Part II.

COMMAND FORMAT ILLUSTRATIONS

The following notational conventions are used in the command format
illustrations to explain how an operand is to be written.

USE OF METASYMBOLS

To make the orerands in the format illustrations clear, four metasymkols
are used:

Name S ol Use
braces {1} delimit syntactical units (one or ncre operands)
that may be repeated; delimit alternatives.
brackets [1 delimit optional names and operands, or both, in
the appropriate field.
vertical | Separates choices for the cperand; for example,
stroke {A|B} denotes that, for the syntactical unit enc-

losed by the braces, either A or B may be chosen,
but not both. ({A|B|C} denotes that a choice rust
be made tetween A, B, and C. BAlternatives may also
be indicated ky aligning the choices vertically
within the braces: .{A
B

ellipsis cee indicate that the preceding syntactical unit may ke
repeated one or more times. If there is a system
limit to the number of repetitions permitted, this
is given in the operand list that follows the for-
mat illustration.

OPERATION FORMAT

To distinguish command names in the format illustraticns, urpercase let-~
ters are used. The user may enter command names in either uppercase or
lowercase letters, depending on his mode of input (see "SYSIN Device and
Character Ccntrol, " in Section 1 of Part II). In folded mode (that is,
uppercase letters and lowercase letters are equivalent), he may use
both. Unless specified by the user, this is the normal mode of keybcard
input. In full EBCLIC mode (that is, uppercase and lowercase letters
are differentiated by the system), he must use uppercase letters. The

OPERAND FORMAT

Within the operand field of the format illustration, the word or rhrase
that is used to identify each operand is written entirely in lowercase
letters. For gositional operands, only the lowercase word or phrase ap-
pears; for keyword operands, the keyword (to the left of the equal sign)
is in uppercase letters, and the keyword descriptor (to the right of the
equal sign) is in lowercase letters.

Note: Unless otherwise noted in the operand descrigtions, all operands

shown in keyword format may ke specified positicnally. The converse is

not true; operands shown in positional format must be specified in posi-
tional notation.

Part I: The command System 5§

Coded Value: This is a character or string of characters that must be
Written exactly as shown in the fcrmat illustration. Ccded values
always appear in format illustrations as numbers or uggercase letters,
either to the right of the equal sign or standing alone.

The comma, the period, and the parentheses have sgecial significance in
format illustrations. Commas (or tabs) must always be used to segarate
operands or to show the omission of positional operands, unless noc other
operand follows the omission. Parentheses and reriods must be written
as shown in the format ijillustrations.

OPERAND DESCRIPTIONS

Detailed information about writing each operand is given in a list fol-
lowing every format illustration. At the end of the crerand description
information that appears under the heading "Specified as"™ describes the
valid specifications for the operand, and infcrmaticn under the heading
"System default,” descrikes the system's action if the operand is
omitted. System default is not shown if the system's default value is
null.

COMMAND FUNCTION AND USE

Following the operand description, the command is discussed under "Func-
tional Pescription," "Programming Notes,® and *Cautions.”

"Functional Description®™ descrikes the aciion of the system when the
command is received. “Programming Notes® coatains infcrmation on how to
use the corrand; if none of this information is pertinent to the partic-
ular command, the subheading for these notes are critted. “Cautions®
are statements of warning to the user akout difficulties he may have in
using the command. “Cautions" appear only where applicable.

In the examples of command usage that follow the conmrand description you

are given a brief description of what is being accomplished. The exam-
ple shows the user's input and the system®'s response.

GENERAL TERMS

These general terms are used in many of the command descriptions in Part
III. (More terms, referring to a specific functional group of commands,
are defined under "General Terms®™ in Section 2 of Part Ix.)

cataloged
a data set is cataloged when its name and other rertinent informa-
tion is entered in the user‘s catalog. All VSAM, VISaM, and VPAM
data sets are automatically cataloged when they are created. All
others are cataloged via the CATALOG or EVV command.

data definition name (DDNAME)
the name assigned to the data set definiticn for a given data set
by DDEF. This name consists of one to eight alphameric characters,
the first of which must ke alphabetic.

data set name (DSNAME)
the name used to identify a data set. A data set name consists of
one or more simple names. Each simple name has fram one to eight
alphameric characters, the first of which must be alphabetic. a
period is used as the separator between simple names.

Exarple:

GOAT
GOAT .WINNERS
GOAT.RALPHR.S66.P1.A

The maximum number of characters, including periods, is 35. There-
fore, the maximur number of simple names is 18.

Fully qualified data set néme: identifies one specific data set;
it includes all simple names (that is, qualifiers or index levels)
of that data set name.

Partially qualified data set name: identifies two or more data
sets Ly omitting the rightmost simple names of their fully quali-
fied data set names. For example, the partially qualified data set
name GO0.AB14 identifies data sets GO.AB14.P1 and GO.ABl4.P2.

default value
the value that the system or user assigns to an operand of a com-
rand or to an implied operand. This value is used when the operand
is omritted.

defined
a data set is defined when its characteristics are descriked to the
system. Every uncataloged data set referred to in a task mwust be
defined within that task; the definition must precede the first
reference. A data set may be defined by weans of a CDEF command, a
LCDEF macro instruction, or a CDD command that results in execution
of a prestored DDEF command.

generation data group
a collection of successive, historically related data sets called
generations. The entire group is referred to by a single, partial-
ly qualified data set name that is limited to 26 characters to
allow for appending atsclute generation nuwbers.

generation names
specific generations of a generation data group are referred to by
appending an absolute or relative number to the generation data
group name.

Absolute generation numker: has the form GxxxxVyy, where xxxx is a
four-digit decimal generaticn number, and yy is a two-digit decimal
version number.

Example:

HURST.LINER4.TT.GOO02VO1
HARZ .GO452v23

A period must separate the absolute generation number from the
generation data group name to which it is appended.

Relative generation number: a plus or minus decimal number. The
relative generation number of the most recently cataloged genera-
tion is (0); the generation just prior to that is (-1), and the one
just prior to (-1) is (-2); a new generaticn is (+1).

Example:

GOST.YZ(0)
GOST.FF.PKJ(+1)

Part I1: Use of Commands 7

line ,
a physical record in a line data set or region data set. Also,
line may refer to a unit of information entered from a terminal.
In this context, a line consists of the string of characters (in-
cluding blanks) typed in before the RETURN key is pressed.

member name
identifies a member of a VPAM data set. The memker name consists
of from one to eight alphameric characters, the first of which must
be alphabetic.

Example:
FRH.TU4(SWINGS)

The member name is enclosed in parentheses and immediately fcllows
the VPAM data set name.

source list
a string of commands or program calls used as input to the system.

volure identification

the identification assigned tc a specific volume. The volume iden-
tification consits of from one to six alphameric characters.

PART II: USE OF COMMANDS

The system-sugpplied commands are grouped into seven categories. Each
group has a different function. The groups are:

¢ Task management

e Data managenment

e Progranm management

¢ Command creation

e Message handling

s User profile

¢ Program Product Language Interface (PPLI)

The commands in each group are discussed in the secticns that follow.
Detailed descriptions of the commands are presented in Part III.

SECTION 1: TASK MANAGEMENT

Task ranagement commands allow the user to initiate and terminate tasks
or to supplement or change the system's operaticn fcr his own task. The
term “"task" describes any discrete sequence of the system's operations
for the user.

The user's task comprises all the work done by and for the user. It is
injtiated by a LOGON command and is terminated by a LCGCFF command.
However, certain conditions, such as an abnormal task termination
(ABEND), cause the system to issue a LOGOFF command to terminate the
current task and a LOGON command to initiate a new task for the user.

The task management commands and their system functions are shown in Ta-
ble 1.

Table 1. Task management commands and their functions

r T -
|Cormand | Function
L I _—
I T
| ABEND |Eliminate the current task; start a new task.
| I
| ABENDREG | Display register contents at the timre of the rost recent
] | REERE.
|
BACK |shift the user's conversational task to ncncenversational
|rode.
|
BEGIN |Connect the user to an MTT application prograr.

|
|
|
|
|
{CANCEL |Terminate execution of a nonconversational task prior to its
| | normal end.

| I

|CHGPASS |Alter the user's password.

i

| EXECUTE |Initiate a previously defined nonconversaticnal task.

|

I
EXHIBIT |Display the activity of the batch work queue cr of a user
|task.

I
LOGOFF |nNotify the system that the user wants tc terwinate his task.

1
|
4
|
|
]
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
| |
LOGON |Identify the user to the system for initiation of his task. |
|
|

|

|

|

|

|

-

| SECURE |Identify the types of I/C devices that are needed for private
| |data sets in a nonconversational task. {
] | |
TIME	Establish a time limit for execution cf the task.
USAGE	Fresent statistics relating to the user's utilization of sys-
	tem resources.
ZLOGON	Perform, at LOGCN, a user’'s previously defined procedure.
L L J

Communicating with the System

The user is known to the system by his user identificaticn, which is as-
signed to him by an installation administrator using the JCIN comnand.
All the user's data is stored in the system under his identification.

Section 1: Task Management 9

Thus, when the user is connected tc the system, the minimum data re-
guired to initiate comwmunication is his user identification.

Resource Control

When the user is joined to TSS, he is assigned a user limits tatle,
which ccntrols the allocation of system resources for his use. The user
is limited to the amount of CPU time, connect time, pages of permanent
and temporary storage, unit-record devices, direct access devices, rag-
netic tape devices, bulk I/0, and tasks. These rations are imposed ei-
ther for a specific time period or for the cumulative time that the user
is joined to the system. The limits established for a user are deter-
mined by his installation. The user can examine his usage of rescurces
with the USAGE command (see Part III).

CONVERSATICNAL MODE

CONVERSATICNAL TASK INITIATION

After turning on his terminal and dialing the systenm, the user initiates
- his task by entering a correct LOGON command. He also has the option of
connecting to an already running task with the BEGIN command. He ray
enter his cormmands through his terminal keyboard, or card reader, to di-
rect execution of his task.

SYSIN: This name designates the source of the input stream, which con-
tains the series of command statements that direct the user's task, and
may include source language statements and data. In conversaticnal
mode, this input stream is entered through the wser's terminal. The
executable command statements within a conversational SYSIN are recorded
only as the printed listing at the terminal; the excerticns are ttle
DATA, MCDIFY, and text-editing commands, which are used to build a data
set that is recorded within the system.

TIME: As & part of the initialization (LCGCN) process, the systenr auto-
matically invckes the TIME command, establishing a CPU time limit for
execution of the user®s task. The user may specify a time limit, not
exceeding 7 1/2Z hours, by issuing the TIME corrand at any time during
his task.

CONVERSATICHNAL TASK EXECUTION

After the initialization process has been completed, the system asks the
user to enter his next ccmmand statement (see "Request for Next Conrmand
Statement,”™ below) and engages in a conversaticn with him. The user's
part of this dialog consists of any command and source language state-
ments that he enters during execution of his task and his replies to the
messages issued by the system. The system®s part of this dialog con-
sists of wessages to the user, responses to his command statements, and
requests for command statements. The user has control over the length
and type of messages he receives. (Details are presented later in Sec-
tion 5. Message texts appear in this manual as part of the examples.
Messages axe published in System Messages, GC28-2037. The system issues
general information messages and diagnostic messages that inform the
user of error conditions.

INFORMATION MESSAGES: These messages prompt the conversational user to
supply certain information when a mandatory operand has been omitted or
inform the user of the actions the system has taken in executing a com-
mand statement.

i0

DIAGNOSTIC MESSAGES: These messages warn the user of errors that he has

made in entering a command name or operands. Scme nessages request the
user to correct his errcrs.

ENTERING CCMMAND STATENMENTS: Command statements may be entered into the
systermr fror the user's terminal, the system card reader, or a magnetic
input device in which the information is stored in card-image forrmat.
Uppercase and lowercase notations in this publication are illustrative;
command statements may be entered in either form.

The end of a command statement entered from the terminal keyboard is in-
dicated by pressing the RETURN key. If a command statement requires
more than cne line, one hyphen must be typed at the end of the line be-
fore the RETURN key is pressed. The hyphen signals that the statement
is not complete and is continued on the next 1line.

Command statements that are entered through the terminal card reader can
utilize free-form format (that is, input is not restricted to particular
card fields). The 11-5-9 punch, following the command operands, is used
to signify end of block (EOB) for command statements. For statements
longer than 80 characters, with the terminal FOB switch on, the con-
tinuation character may appear in any available column. If the ECE
switch is off, the continuation character is not needed unless the
staterent exceeds 260 characters.

Note: Nonconversational input thrcugh a high-sreed card reader does not
require the 11-5-9 punch to signify EOB; its inclusicn will have no
effect. A semicolon is a valid command separator. An ECB is automati-
cally inserted by the card reader at the end of every card. A continua-
tion character must appear (in any column) for command statements that
require more than one card.

Caution: In most cases, tak characters are treated as spaces and are
valid characters in the command system. However, because of physical
limitations in terminal devices, displaying tabs of more than 65 consec~
utive spaces at the terminal printer might cause the next character to
be lost. Furthermore, when two or nore consecutive tabks are entered
through the terminal card reader, they may not be printed correctly at
the terminal printer, even though they are correctly transmitted to the
system.

REQUEST FOR NEXT COMMAND STATEMENT: The syster informrs the terminal
user that it is ready to accept his next command statement by printing a
prompt character that, initially, is an underscore character (_) in the
first character position of a new line. (The system backspaces one
space so that the first character you enter is above the underscore.)
When the terminal card reader is being used to enter input, the system
signals that it is ready for the next card, or the next command on a
card, by printing the underscore.

SYSIN DEVICE AND CHARACTER CCNIRCL: The user has six ccmmands (listed

in Table 2) that he can use to select the SYSIN device or the character
set he wants to use for communication with the system.

When the user initiates a conversational task, the system checks the
value of the ALPHABET operand in the user's profile (see Section 6).
Initially, its value is 1, which indicates folded mode. The user can
type any lowercase letter, and the system converts it to uppercase. The
special characters, , ", !, A, #, and §, are valid alphabetic charac-
ters in either mode. The system accepts the full EBCDIC character set
when the user enters KA. To initiate card reading, the user enters the
C, CA, or CB command at the keykoard and presses the RETURN key. The
syster reads all the cards or reads cards until the user presses the AT~
TENTION key or until a K, KA, or KP cormmand is read. After any of these
conditions, the system requests the next input from the keyboard.

Section 1: Task Management 11

For further instructions on SYSIN device selection and character con-
trol, refer to Terminal User’'s Guide.

Table 2. Commands for SYSIN device and character set selection

r* T . 1
| Conrmand| Function !
L o e e e e e

¥ T

¢C	Transfer control to the card reader; if the keykoard mode was
	Ka, CA is the new mode; if KB was the keyboard mode, CB is
	the new mode.
!	
ca	Transfer control to the card reader and convert card input
	from 1057 Card-Punch code to EBCLCIC.
!	
I cB	Transfer control to the card reader and comvert card input
	frcm 029 punch code to EBCDIC. i
I	}
K	Transfer control to the keyboard; if the character set used {
lduring card reader input was CA, KA is the new mode; if CB	
{	was the card reader mode, KB is the new mode.
I	I
Ka	Transfer contrcl to the keyboard and use the full EBCDIC i
	character set. Can be used to change the ALPHABET operand
[withcut transferring control.	
	I
KB	Transfer control to the keyboard and use the fclded character
	set. Can be used to change the ALPHABET operand without
	transferring control. \
L 1 —_— - — ¥

COMMAND STATEMENT EXECUTICN: First, every comrmand statement entered by
the user is analyzed to determine if it is valid. Then, if it is, the
actions requested by the command statement are performed. IlLastly, the
user is prcmpted to enter the next statement. If a command in a conrand
Statement is not valid, the system issues a diagnostic message, which
may request the user's corrections. If the invalid command is canceled,
the rest of the command statement is executed befcre the system invites
the user tc¢ enter his correction or the next statement. Prompting mes-
sages are issued as each command in a statement is analyzed, and the
user can supply requested informaticn when the nessage is 1issued.

Correctly entered commands have the same effect whether they are entered
in one statement or in individual statements. For example:

call abc; print resultds,,,edit; delete gh.k
produces the same result when executed as:

call abc
print resultds,,,edit
delete gh.k

The first example (three commands in one comrmand statement) is more con~
venient for the user, since he does not have to wait for the executicn
of each command before he can enter the next command. If the CALL ccnm=-
mand had been entered incorrectly and was canceled by the systemw, the
user would not be able to correct the ccmrand until the other two com-
mands were executed. In the second example, he would be akle to correct
his error kefcre PRINT and DELEIE were executed.

COMMAND STATEMENT RESCLUTICN: When a command statement is entered, the
systerm goes through this sequence of events to resolve the contents of
the statement.

12

6.

The system searches a list of synonyms to see if one exists for the
specified command name. If one does, the system replaces the spec-
ified name. This step is repeated until nc further synonym is
found.

The system searches the user's procedure library, which contains
cormands he has written, to see if the command name exists there.
I1f it does, the system performs the action described in Item 5. If
it does not, the system performs the action described in Itenm 3.

The system searches the system®s procedure library, which contains
systen-sugplied commands. If the command name is there, the syster

perforrms the action descriked in Item 5. If not, the system dces
Item 4.

The system assumes that what was entered was a module name, not a
conmand name. A direct program call is executed.

The system resolves the operands.

a. When keywords are specified, the list of synonyms is searched.
If a synonym is found, it is inserted in place of the specified
keyword.

b. 1If explicit operand values are specified, they are used; if
nct, the system does Item c.

c. A list of user default values is searched; if values exist,
they are inserted; if not, the system does Item d.

d. A list of system default values is searched; if values exist,
they are inserted; if not, the system does Item e.

e. 1Tne operand is given a null value.

This command is invoked.

Note: The default values initially assumed by the system are described
in Appendix C; how to specify defaults and synonyms is discussed in Sec-
tion 6.

CCNVERSATIONAL TASK INTERRUPTION

The user can interrupt execution of his conversational task by pressing
the ATTENTION key at his terminal. The system®s response depends upcn
when the interruption occurs {see Taktle 3}.

Takle 3. System responses to attention interruptions

— T]
| Syster Response | |
| to ATTENTICHN] Explanation cf Respcnse |
b L

F --- , -~ e :
_ (underscore)	The last command in the source list was being
	executed, but the systen was interrurted. (The
	system is executing privileged code.) The system
	cleans up kefore it prints the underscore.
i i 4	
1] T b	
* (asterisk)	Privileged code was interrupted before execution
{	of last command in the source list was started.
b — 4 ——— 4	
g v)]	
! (exclaration)	Nonprivileged code was interrupted; the processing
	I
L 1 1

can be resumed if the interrurted scurce list has
not ccmpleted execution.

Secticn 1: Task Management 13

When the user presses the ATIFNTION key while privileged code is execut-
ing, the system responds with either an undersccre or an asterisk. 1In
either case, the user cannot resume execution of the interrupted com-
mand. He gets control in the command mode. If an * is received, the
user can resume executicn of the source list (by pressing the carriage
return) at the command following the interrupted conmand.

When the user interrupts execution of nonprivileged code (the system
responds with an exclamation), any remaining commands in the source 1list
and the status of the interrupted program are saved. After receiving
the !, the user has several options:

®* He can issue the ABENC command to cancel his task;

®* He can issue the GO command (or press the carriage return) to resume
processing at the point of interrupticn;:

® He can issue some valid command (either a system-supplied commrand or
one of his own making), including direct calls to ncnprivileged
modules;

¢ Hde can use one of the TSS attention handling conrands, descrited
below and in Part III of this look.

The ABEND comrand cancels the task and initiates a new task. All prc-
grams are unloaded; all DCNAMEs are released. The user is now in con-
mand mode (see ABEND command in Part IiI).

The GO cormrand gives control to the most recently interrupted prograr at
the point of interruption (see GO command in Part III).

When the user follows an attention interrupticn with sore command other
than ABEND or GO, the previously interrupted program is saved for later
execution. New command statements are honored. These new commands can
be interrurted; their status is saved, too. 1The user can interrurt, and
save, as many as 10 source lists (commands or programs). If he exceeds
this nurber, he receives a diagnostic message.

There are attention handling commands that allow the user to control the
processing of interrupted source strings. These conmands, descriked in
Part I1II, are listed below:

* EXIT -- bypass current module or program; process next command in
the source list

® PUSH -- save status of an active program

¢ RTRN -- clean up all current source 1ists

STACK -- display names of active programs

STRING -- display modules not yet processed in the current source
list

If the user wants to run sections of his code that will not be affected
by an attention interruption, he can set the attention interventicn pre-
vention switch (AIPS), as descriked in Assembler User Macro Instruction.
When this switch is set, the system does not interrupt the user's pro-
gram when one attention interruption is received. However, a simulated
attention interruption is made so that the user can later test the AIPS
to see where the attention occurred. Setting the AIPS cnly inhibits a
single attention interruption. If a suksequent attention interrugption
occurs, the program stops executing and the user®s keyboard is unlocked.

iy

Macro instructions in the assembler language allow the user to supply
nis own attention-interruption-handling routines. See also Assemklerx
Usex Macro Instructions.

CCNVERSATICRAL TASKE TISMINATION

The user ends his conversatiomal task by entering a LOGOFF command at
his terminal, or he may switch his conversational task to nonconversa-
tional rode (see "Switching Modes™ later in this section).

CONVERSATICNAL TASK OUTRUOT

The messages produced hy the system during execution of conversational
tasks and the responsss »mmand statement executicn are printed at
the user®s terminal. its of ing during execution of his
task wmay be held in da & within o system. The user can exaxine
the results of processing. He can issue the LINE? command (if the data
set containing the results is a lipe data set: to obtain a listing at
his terminal, or he can issue cne of the bulk output commands (see "Bulk
Output Cormands®™ in Section 2} to primt oy punch the results in nonccn-
versational mode. Also, the user can use dynamic L/0 facilities in his
FORTRAN and assembler languagsz programs to obtain these results. (See
Assembler Programmer®s Guide smd FORTRAN programmer 's Guide.)

o

SYSOUT: This rame designates the cutput that is preduced during execu-
tion of the user's task. This output includes the syster wmessages, the
responses to command sxecation, and the optional problem program cutput
that are produced during execution of a user®s task. In conversational
mode, the information that is included in SYSQUT is delivered at the
user's terminal. The SY¥SOUT for a conversational task is not normally
recorded by the system in any form. S$Since SYSIN (see the defintion of
this term under *Conversational Task Initiation® earlier in this sec-
tion) is entered and is rec 5 b user’s texwinal, these two in-
formation streams ave interspersed on the terminal listing.

NONCONVERSATIONAL MUDE

The nonconversational mode ration wost useful for tasks that do
not require the user's presence at the texrminal to resolve any prcblems
that may arise during task esxecution. In this rode, there is no direct
comminication ketween the and the user. The command statewents
that direct the system must hsve been furnished previously as a complete
sequence, called a nonconversastional SYSIN data set (see telow). Any
systern messages resulting from the execution of the task are received by
the user as a printout from the central computer installation.

NONCONVERSATIONAL SYSIN DATA SET

A nonconversational SYSIN data set is a series of comwand statements and
associated data that are to be acted upon in the sequence in which they
are presented to the system. The command statements inform the system
of the actions the user wants performed during execution of his nonccn-
versational task. The user creates his nonconversaticnal SYSIN data set
in the same way he creates any other type of data set. He can construct
it at his terminal, by using the text-editing commands {(or DATA or MCDI-
FY), or he can subnit it on punched cards to the system operator for
entry imto the system via the installation®s high-speed card reader.

The data set must be VSaM (variable-format or fixed-format records) or
VISAM line, and it must be cataloged before it can ke executed.

Section 1: Task Management 15

Each nonconversational SYSIN data set begins with a LOGCN command and
ends with a LOGOFF command, unless the mode of the task is keing
switched (see "Switching Modes"™ below). If any private I/0 devices are
to be used by the task, the SECURE command must immediately follow the
LOGON command.

Data that is to be read by the user's program during execution may ke
included in the SYSIN data set; this data must immediately follow the
command that starts execution of the user's program. For FORTRAN data
sets, the end-of-data record (%END) must follow the last data record.

NONCONVERSATIONAL TASK INITIATICN

As in ccnversational mode, the user must be granted access to the systen
by his system administrator before attempting to communicate with the
system. Then, the user can initiate his nonccnversational tasks ky one
of these methods:

1. After the nonconversational SYSIN data set has been cataloged, the
user initiates his task by issuing the EXECUTE ccrrand, which must
be entered from the terminal as part of his conversational task;
hcwever, EXECUTE can ke given within the SYSIN data set of a non-
conversational task to initiate another nonconversational task.

2. The user may start his task conversationally and then switch the
rode tc ncnconversational ky using the BACK command (see "Switching
Modes"™ below).

3. By preparing his ncnconversational SYSIN data set cn runched cards,
the user can submit it to the system operator for processing. The
data set is cataloged, and execution is requested when it is read
in by the system. The user must make certain that any data sets
referred to by his nonconversatiocnal task are sukmitted to ttre sys=-
tem before the SYSIN data set (see Appendix B).

regardless of which method of nonconversational task initiation is used,
the user's task is assigned a batch sequence nurber (BSK) Ly the systen
and is executed as soon thereafter as space is available for it. The
results are unpredictable if a data set is used by a conversational task
before a nonconversational task is finished with it.

The BSN is a four-digit decimal numker that identifies the user's non-
conversational task. The user must use this nunber when he wants to
cancel (via the CANCEL command) a previously initiated ncnconversatiocnal
task.

NCNCONVERSATIONAL TASK EXECUTION

During execution of a ncnconversaticnal task, there is nc interaction
between the system and the user. The system analyzes, in the order pre-
sented, each command of the nonconversational SYSIN data set and
executes every valid command. If a command is invalid, the systern
ignores it and continues reading the SYSIN until either a valid ccmnmrand
is read or the task is abncrmally terminated. 2fter reading and execut-
ing a valid command, the system proceeds to process the next cormand,
continuing until it processes LOGOFF, which completes the task. Resclu-
tion of conrand statement elements is identical to that described earli-
er in this section for conversational executicn.

NCNCONVERSATIONAL TASK TERMINATICN

A ncnconversational task is terminated in one of four ways:

16

1. when LOGOFF is read, normal termination cccurs.

2. when the user issues the CANCEL comnmand, specifying one of his pre-
viocusly initiated nonconversational tasks, that task is eliminated.
A task awaiting execution can be canceled.

3. The system terminates a nonconversational task when it encounters a
situation requiring resolution by the user. Typically, such a
Situation arises when the system must prompt for an omitted operand
in a command or must issue a diagnostic ressage that requires a
user response. Whenever aknormal termination of the user's task
occurs, a diagnostic message that indicates the reason is printed
as part of SYSOUT for the task.

The user can give a response to a system prompt even when his task
is running nonconversationally. He must default RSVP=Y and he must
provide the response in his SYSIN data set. When the prompt is is-
sued, the response is used and the task is not terminated abnorral-
ly. There must be a response for each prompt or the task is
terminated.

4. A system shutdown terminates all ncnconversaticnal tasks. Those
initisted by PUNCH, PRINT or WT are restarted when the syster
resumes operation. No restart is attempted for other nonconversa-
tional tasks. :

NONCONVERSATIONAL ABEND CONTROL

The system may terminate a nonccnversational task if there is some pro-
bler that needs to be resolved by a user. Such a case occurs when the
nonconversational task executes a command that issues a prompt that re-
quires a response. When this happens, the syster terrminates the task,
and diagncstic messages are printed as part of the SYSOUT data set.

There is a way to control the system's action when this condition
arises. The user can provide a special data set that receives control
when his ncnconversational task would otherwise be terminated. He can,
within his task, define a data set (via DDEF) that is cataloged and that
contains a series of commands:

ddef tskébend,vi,dsnamel

Notice that the DDNAME of the data set must be ISKAEENL. The data set
must be cataloged. Rather than terminate a nonconversational task, the
syster finds the data set defined with the TSKABEND DDNAME; then, the
system executes the comrands from that data set (the data set should end
with a LOGCFF command).

Example: The user has a cataloged data set, named LSNAMF1l, that con-
tains these commands: FC?, USAGE, and LOGOFF. In his nonconversational
task, he defined this data set with the TSKABEND DDNAME. Then, when the
nonconversational task is executing, the system finds that the operand
of a LINE? command is a nonexistent data set name, NCDS. The syster
stops executing the SYSIN data set (the nonconversational source 1list)
and begins to execute the commands in the LCSNAME1 data set. A diagram
that represents the flow of control is shown in Figure 1.

Section 1: Task Management 17

NONCONVERSATIONAL TASK DSNAMEL

LOGON NICK

DDEF TSKAEENL,VI,LCSNAME1 PC?
. USAGE
. LOGOFF

LINE? NODSE

LOGOFF

Figure 1. Flow of control fror a nonccnversaticnal task to a data set
that continues the task to normal termination

NCNCONVERSATIONAL TASK OUTPUT

The user specifies, by commands in his nonconversational SYSIN data
sets, the output expected from his nonconversational task. He must
define the data sets that are to ke generated and indicate how they are
to be output. Other output includes a printout of the SYSOUT data set,
which is printed automatically Lty the system. This data set contains
any messages issued by the system, interspersed in a listing of the com-
mands for the task, and may also contain printable data generated by
problem programs during execution of the task. All tapes, punched
cards, and listings resulting from the nonconversational task are pFrc-
duced cnly at the computer center.

Note: Each SYSOUT data set kegins with a message, identifying the ncn-
conversaticnal task and its originator.

SWITCHING MODES

The user can use the EACK command to switch a ccnversaticnal task to a
nonconversational task. 1There is no way for him to switch fror ncnccn-
versaticnal to conversational mode.

The user can switch his conversational task to nonconversational if all
three, cf these conditions exist:

1. He has entered a nonconversational SYSIN data set and defined it to
the system. This data set must not begin with a LOGON cormand
(however, it must end with a ICGOFF command).

2. The éystem has space for another nonconversational task (see "Ncn-
conversational Task Initiation" akove). If not, the user is in-
forwmed, and he may try toc switch the mode of operation again later.

3. The user enters at his terminal a BACK command requesting noncon-
versational continuation of his task.

If the system accepts the user®s request, it establishes the nonccnver-
sational task, assigns it a batch sequence numker, and eliminates the
conversational task from the systen. The user's terminal is then avail-
able to him, and he can enter a new conversational task with the LOGON
procedure.

18

SECTION 2: TCATA MANAGEMENT

There are commands that allow the user to manage his data sets. These
commands are divided into four groups, as follows:

* Data set management
e Text editing
e Data editing

¢ Bulk output

DATA SET MANAGEMENT

The data set ranagement commands are used to identify data sets; to
Store them in the systemr and to retrieve them from the system; to share
ther with cther users; to copy and erase them; and to define them for
use in the system. The data set managewent ccrrands and their system
functions are shown in Takle 4.

TEXT EDITING

iext is edited by using the text-editing commands. These commands mani-
pulate lines of information that are within an existing region data set
or line data set, or the commands manipulate lines as they are keing
entered into a region or line data set. With these commands, the user
can simaltaneocusly create and edit data sets; he can correct, insert,
and delete lines; he can segment a data set intc regions; and he can
transfer lines from one data set to another. Also, the user can display
lines of a data set at his terminal and can nullify previous changes
that were made by the commands. The text-editing commands and their
syster functions are shown in Table 5.

GENERAL TERMS

The following terms are used throughout the discussions on the text
editor.

break character

when the user enters a break character {(which can te the system-
supplied underscore or some user-supplied substitute character),
the system interprets the statement that fcllcws as a command. The
break character allows the user to enter comrands when the system
expects data. However, when the first and second characters of the
line are break characters, the usual break-character action does
not take place. Instead, the system replaces the pair of break
characters with a single break character and processes the line as
if no break character had been seen. Thus, lines starting with
multiple break characters can ke put into procedures or data sets.

current line pointer

is an indicator that is maintained by the text editcr. The current
line pointer (CLP) is set initially to the value of BASE (which
defaults to 100) for empty regions or emrty line data sets, and to
the first available line in an existing region or line data set.
The CLP is advanced through the region or line data set as text-
editing commands are executed, always pointing to the next line to
be prccessed. For rules that govern the positioning of CLP, refer
to Aprendix F.

Secticn 2: Lata Management 19

Table 4. Data set management commands and their functions
— T - - e |
| Command | Function]
b + :
| CATALOG | Create or alter a catalog entry for a physical sequential |
| | data set; alter a VAM catalog entry; create a catalog]
| | index for a generation data group; or catalog a data set I
1 | as a new generation of an existing generaticn data group. |
] | i
| cbb | Retrieve DDEF commands, which have keen grestcred in a]
| | cataloged or a defined line data set, and process therm. |
|] |
| CDs | Duplicate a data set or a member cf a VEAM data set.]
| | I
| CLOSE | Closes a user's data sets. |
I | |
| DDEF | Define a data set and describe its characteristics to the |
i | system. |
| |]
DDNAME?	List DDNAMES.
DELETE	Delete one private data set entry fror the user's catalog.
DSs?	Present the status of cataloged data sets.
ERASE	Free direct access storage assigned tc a grivate or a puk-
	lic data set and remove its catalog entry from the user's {
	catalog.
EW	Catalog private VAM data sets.]
]	I
FILEDEF	Define a dataset, describe its characteristics, and pro-
	vide the link between 1SS and 0S/VS datanames. i
I I	
FILEREL	Delete a data definition established by a previous FILEDEF
1	and disconnect the 0S/1SS 1link.
]	I
JOBLIBS	Manipulates DDNAMES. !
!	
LIDS	List data set names fror a VAM targe. i
i	
pC?	Obtain the name, access qualificaticn, and cwner's user
]	identification of cataloged data sets.
I	I
PERMIT	Authorize or withdraw authorizaticn of cther users to]
	access a user's specified data set.
I	
POD?	Display information abcut members of a VPAM data set.
]	
RELEASE	Delete a data definiticn established Ly a previous LDEF]
{	cormand.
I I	
RET	Change the catalog attributes of a VaM data set.
i	
SHARE	Allow a user to share data sets belcnging tc another user {
i	who has granted authorization with the PERMIT command .
TV	Retrieve a data set that was written ontc tage via the VT j
	command and write the data set into a VAM volume.]
I i	
VI	Copy a VaM data set onto tape as a rhysical sequential
	data set.]
]	
vv	Copy a VAM data set on direct access storage.
R, e o 4	

Table 5. Text-editing commands and their functions

r T k|
| Comrand | Function]
L 3 4

T a
T CONTEXT | Replace the specified string of characters within a line]
| | or range of lines with another specified string of |
| | characters. }
| | : |
| CORRECT | Change or insert characters in cne or more specified]
i : { lines.]
|] |
| DISABLE | Remember all modifications made in a data set in order to |
| | restore it to the original state, if requested.]
| | I
EDIT	Invoke the facilities of the text editor; this command
	must precede the other text-editing commands.
ENABLE	Remember the most recent modificaticn rade in a data set.
	The data set will ke restored to the state that existed]
	before the last command.
] ' I	
END	Terminate processing by PRCCDEF and the text editor, or
]	both.
EXCERPT	Insert the specified region cr range of lines from another
	place in this data set or from another data set into the
i	current data set.
EXCISE	Delete the specified line or range of lines from the cur-
]	rent data set. l
I	
INSERT	Insert the following lines into the current data set.
I	
LIST	Display the specified line, or range of lines, on the
	user's SYSOUT.
	I
LOCATE	Search the current region for the srecified character]
	string.
NUMBER	Renumber the specified line or range of lines.
] l	
POs	Retain all modifications made in a data set.
REGION	Create a subset of specified lines cf a data set; these
	lines are to ke locateé as an entity known as.a region.
REVISE	Replace the specified line or range of lines with those l
	lines entered after the command or delete the specified
	line.
] !	
SIET	Delete changes made to a data set by previcus editing com- }
i	mands; restore the data set to its previous condition.
	I
UPDATE	
L 4 J

Add lines to the current region or data set.

Section 2: pata Managemeht 21

In all text-editing commands, where N1 is an orerand, except as in-
dicated in the operand descriptions, the current value of CLP ray
be specified by defaulting N1. The value of CLP may be displayed
by issuing:

list clp

hexadecimal constant

line

line

has the form of an X followed Lty a string that is enclosed within
apostrophes; the characters in the qucted string rust ke a digit (0
through 9) or A, B, C, D, E, or F. There can be no other charac-
ters within the apcstrophes. Some examples are:

X'01’
X'ABCO2'
Xll

data set
is a VIShAM data set that has this reccrd format:

| <=—- 132 kytes maximun >
T T =TT

l record | line | |

] length | number | flag | text

i 4 1 i

<-—l§ Ekytes--> <-—-7 kytes--> <--1 kyte-->

b e e b

Key

The record length field, which appears only in variakle-length rec-
ords, and the flag field are used only by the system. Total record
length, defined in the DCB suktoperand of the DDEF command, cannct
exceed 132 bytes. The leginning of a line data set record is the
first digit of the line number. The relative key gosition is four.

nurber specificaticn

is a number that represents a line. This nunker can ke expressed
either as an absolute (for example, 200 specifies line 0000200) or
as a relative value (positive or negative). A relative value indi-
cates a number of lines distant from CLP (for example, +2 identi-
fies the second line after CLP, and -1 designates the line inmedi-
ately preceding CLP).

N1 and N2 are the keywords for the beginning line numker and the
ending line number operands that are used with certain comrands
(for example, CORRECT, INSERT, LIST, REVISE). The values specified
for N1 and N2 are resolved ky the system according to the following
rules:

1. When the operands are in the range of line numbers that exist
in the current region or in the data set being processed, the
system uses the value that was specified.

2. The following items discuss the commands except INSERT and
REVISE.

a. If N1 is a numker greater than the last line of the current
region or of the data set, or if N2 is a number less than
the first line of the current region or of the data set,
the command is canceled and a diagnostic message is issued.

(Note: The diagnostic messages you get depend on the values of BREVITY
and LIMEN. See "Implicit Cperands®™ in Section 6 and Appendix c.)

22

b. If N1 and N2 are two different numkers and are within the
limits of the current regicn or cf the data set, btut the
line does not exist, the system uses the next-higher-
numbered line for N1 and executes the cormand and uses the
next-lower-numbered line for N2 and executes the command.

c. If N1 and N2 specify the same line and the line does not
exist, the command is canceled and a diagnostic message is
issued.

3. The following items discuss the INSERT and REVISE commands.

a. An INSERT corrand is executed when N1 is outside the range
of the data set or current region; N1 is within the range,
but does not exist; or N1 is within the range but, with the
increment (assumed or specified), points tc a line that
does not exist.

b. A REVISE corrand is executed if the line that is specified
does or does not exist within the data set or even if the
line 1is outside the limits of the data set.

Example: The following data set exists. The accompanying ccrrands
shcw what the system prints out after it resolves the values you
specify for N1 and N2. (This user has set LIMEN=I.)

0000100 N1 AND N2 ARE WITHIN THE RANGE

0000200 N1 IS GREATER THAN THE LAST LINE
0000300 N2 IS LESS THAN THE LAST LINE

0000400 N1=N2, BUT THE LINE DOES NOT ¥XIST
0000500 N1 NOT= N2 AND THE LINE DOES NOT EXIST
0000600 INSERT CCMMANL TESTS

0000700 REVISE COMMAND TESTS

0000900 LINE 8 DCES NCT EXIST

0001000 LAST LINE OF THE DATA SET

User: edit linetest

Sys,User: 1list 100,200
0000100 N1 AND K2 ARE WITHIN THE RANGE
0000200 N1 IS GREATIER THAN THE IAST LINE

CZAsSP100 CLF¥ SET TO 0000300

excise 1500

CZASL500 N1, 1500, BEYCND END CF DATA SET OR REGICN

excise 100,50

CZASL600 N2, 50, LESS THAN START OF CATA SET OR
REGION

excise 50,200

list 50,200

CZASL600 N2, 200, LESS THAN START OF DATA SET OR
REGION

excise 900,1500

list 800,1500

CZASL500 N1, 800, BEYONLD ENLC OF CATA SET OR REGION

Note: This user reinserted the deleted lines (100, 200, 900,
1000).

list 800,1ast
0000900 PREVICUS LINE 8 DOES NOT EXIST
0001000 LAST LINE OF THE DATA SET

CZASP100 CLP SET TO 0001100

list 800,800

CzASP200 CANCELED: RANGE INVALID
list 800

Secticn 2: Data Management 23

CZAsSP300 CANCELED: LINE 800 DOES NCT EXIST
insert 100

CZASG100 CANCEIED: LINE 0000200 ALREALY EXIS'IS
insert 100,50

0000150 a new line

CZASGO50 CCMPLETED: LINE 0000200 ALREALCY EXISIS
insert 700

0000800 _insert 1500

0001500 _revise 50

(Note: The user issued the following commands -- REVISE 50, 50;
REVISE 200; REVISE 800; and REVISE 1500. In each case the system
responded by prompting with the specified line number.)

1500 _lcgoff

offset
in three commands -- CCNIEXT, LIST, and LOCATE -- the user can spe-
cify starting and ending character positions in the N1 and N2
operands. He does this with an one- to four-digit aksolute decimal
nunber, enclosed in parentheses, and immediately fcllowing the line
nmarber. The first character of data is at position 1. For exam-
ple: N1=700(4) sgecifies the fourth character of line 700; 1’2=900(
14) specifies the fourteenth character of line 900.

prompting
is done by the text editor following entry of a cormand that
expects data (for example, EDIT, REGICN, REVISE, INSERT). When the
LINENC operand in the user profile has a value of ¥, the text edi-
tor issues a line nurber when it expects data; if ILINENO=N, the
keyboard is unlocked, but line number grcrpting does not occur.
Following execution of a command that does not expect data (for ex-
ample, STET, NUMBER, EXCISE) or that completes its execution, the
text editcr prompts the user for a command statement by issuing an
under score.

The user can inhibit line number prorgting by issuing
default linenc=n

before or during text editing. Initially, LINENO=Y.

Even when line nurker prompting is inhibited, the text editor
inserts the line number in the key of each data set line.

region
a line, cr contiguous group of lines, whose numbers are pref ixed by
the same region name. The region of a data set is treated by the
text editor as an entity; region names label a ccntiguous sukset of
lines for identification purposes. The length of the region nare
is determined by the value of the REGEIZE operand in the user
profile.

The text editor automatically reorganizes the regions of a data set
into alphabetically ascending oxder, by region name.

This is a sample region data set that was created by using the text
editor:

Region Name Line No. Data Line

a 0000100 Text of line number 1 of region "a",

a 0000200 and this is next line of region "a";

a 0000300 this is end of region "a".

alrost 0000100 This line starts new region, "almost ",
almost 0000600 where increment has been specified as 500,
almost 0001100 so line nunbers advance ky 500. ,
nextcase 0000100 Although NEXTCASE was the first regiocn name
nextcase 0000200 entered, the text editor automatically
nextcase 0000300 alphabetizes regionms.

swan 0000100 Initial allowable range of region name

swan 0000200 is from 0 to 244 characters.

region data set

is a VIsSAM data set that has this record forrat:

| < 256 bytes maxirmrum >
[T b N Y T 1
| record | region | line i }
} length | name] number | flag | text |
L 1 i - ———d i J
<=4 bytes——> <--7 bytes--> <--1 byte—>

The record length field, which appears only in variable-length rec-
ords, and the flag field are used only by the system. The regicn
name, specified by the user, can be from 0 to 244 bytes long; its
length is defined in the DCB suboperand of the DDEF command. Total
record length, also defined in the DCB suboperand, cannot exceed
256 bytes. The beginning of a record in a region data set line is
the first character of the region name. The relative key position
is four.

string constants

are either normal or quoted. A normal string is a contiguous group
of characters that tegins with any nonblank character except an
apostrophe and ends with the last nonblank character prior to ei-
ther a comma, equal sign, or semicolon that is external to all
pairs of parentheses in the string. A normal string may also end
with the last nonblank character prior tc the end cf a line that
does not have a continuation character. For normal strings, all
EBCDIC characters are valid except a comma, equal sign, or semico-
lon that is external to all pairs of parentheses in the string.

For example,

A+E; (C,D), A*BC*'D", C=D,A B, A(B,C)D
contains these ncrmal strings:

A+E
(C,D)

AI Ecl L] Dl
C

D

A B
BA(E,C)L

A gquoted string is any character string that is enclcosed in apos-
trophes, within which all other apostrophes are doubled. All EPCO-
IC characters are valid. The representation of a quoted string af-
ter it is processed by the system does nct have the apostrophes;
doubled apostrophes are replaced by single apostrophes. For
example:

fection 2: Dpata Management 25

External Representation Internal Representaticn

'$3.80° $3.80
' BOW ARE YOU' HOW ARE YOU
'I*'™ FINE' I'M FINE

transaction takle
the text editor records the changes to a data set in this table;
additions are noted in one set, deleticns in ancther. The user can
nullify the changes that are recorded in the transaction taple (see
"DISABLE, ENABIE, FOST, and SIET Ccmmands,™ in Part III). Normal-
ly, when the editor is invoked, the transaction table is not ac-
tive. To activate it, the user issues

default trantak=y

before invoking the editor. As long as TRANTAB=Y, the transaction
takle is active.

INVCKING THE TEXT ELCITOR

The EDIT command invokes the text editor, initializes the transaction
table if TRANTAB=Y, and invites the user to enter a command or a line of
data. Unless preceded by a user-issued DDEF command, EDIT issues a CDEF
that has these values:

DDNAME=EDDN, DSORG=VI or VE, CCB= (KKP=4, LRECL=132, RECFM=V, KEYLEN=XX)

The value cf DSNAME is sugplied Ly the user in the FLCIT command; the
value of KEYLiN is determined by EDIT by adding seven to the value of
the REGSIZE operand that exists in the user prcfile. Fcr examgle, if
REGSIZE=2, then KEYLEN=9. The text editor can be used to create a data
set. The two types of data sets that can ke created are a region data
set and a line data set. ,

Creating a Region Data Set

The system-supplied value for the KEGSIZE cperand is 0, the key length
(KEYLEN) is 7, and a line data set is assumed. The user can change the
value of the REGSIZE operand Ly specifying a number from 0 to 244. The
REGSIZE operand governs the maximum length for the name of a regicn data
set. The EDIT command can be used to specify koth the value of REGSIZE
and the name of a region in the region data set that is to be created cr
modified. If the user issues:

edit regds,rname=regnam,regsize=8

the system assumes that he wants to operate on the region named REGNAM
in data set REGDS. The waximum length of region narmes in REGDS is 8
characters. The system then prompts (with a line number, if the LINENO
operand is set at Y, the system-supplied value) for the first line in
the region. The sequence of activity is as follows:

User: edit regds,rname=regnam,regsize=8

Systern: 0000100

The system prompts for data for REGNAM, and the user enters the data.
For example:

Sys,User: 0000100 this is data

sys,User: 0000200 for region regnam
Sys: 0000300

26

The user wants to review these lines, but the syster has printed the
next line number. The user types in the break character (undersccre)
and a command, as follows:

Sys,Usexr: 0000300 _1list O,last
Systen: REGNAM 0000100 THIS IS LATa
: REGNAM 0000200 FOR REGICN REGNAM

The system displays the lines of the region and prongts for a comrand.
Notice that the name of the region precedes each line number. 1In a
region data set, the region name and the line number form the key for
each line in the region. The user wants to terminate editing so he
types the END command fcllowing the break character, as follows:

Sys,User: _end

The user is now in command mode; he must reissue the ELCIT command to
contimue processing his data set. Had the user not issued the LIST com-
mand at line 300, he could have terminated editing there:

Sys,User: 0000300_end

The break character is used when the syster expects data (for exanmple,
it has issued a line number), and the user wants to enter a cormand.
dad the user not entered the break character, the comrand at line 300
would have been put in the data set as data; it would not have been
executed.

Note: Cnce a region data set has keen created, the user cannot alter
the maximur region name length (REGSIZE) for that data set. If he wants
to allow region names of greater length, he must erase the data set and
re-create it. Of course, while he is doing this, the user can hold the
contents of the data set in a temporary data set.

Creating a Line Data Set

Unless the user changes the initial system value of REGSIZE, the EDIT
comrand assumes a line data set; if LINENO=Y, the user receives a line
number prompt :

User: edit lineds
Systen: 0000100

Since LINEDS was a new data set, the system prompts with line numkter
100. The user can enter data, and the System responds with the next-
highest line number, in increments of 100. To enter a compand when the
editor expects data, the user precedes the command with a break
character:

Sys,User: 0000100 this is a line data set
0000200 with only two lines
0000300 _end

ECITING DATA SETS

The text editor can be used, also, to edit data sets and to create and
edit data sets simultaneously. Whether the data set is line or region
makes little difference in the procedure used. For the remainder of
this discussion, a region data set is assumed.

The editing tools available to the user are extensive. The example that

follows is by no means complete. The user should refer to individual
command descriptions in Part III for more details.

Secticn 2: Lata Management 27

Example: Previocusly, the user created REGDS as a region data set with
one region, REGNAM. The valuve of REGSIZE was set tc 8 fcr the data set.
Now, whenever the user edits RFGDS, the systen expects him to treat the
data set as a region data set with a maximum region name length of 8.
The user can edit region REGNAM this way:

User: edit regds,regnam

The region exists so the system responds by typing an _:

Systen:

Two lines of data that were created earlier exist in the region. Now,
the user wants to create a new region called FIRSTONE:

Sys,User: region firstone

The system prompts with line 1006, since this is a new region. The user
enters data into region FIRSTONE, and then he terninates the editing
procedure with the END command.

Sys,User: 0000100 notice regsize is 8
0000200 and lineno=y
0000300 so far only two regions exist
0000400 _end

when the user again edits this region he is prompted with an underscore.
Assume now that the user wants to add two lines between lines 200 and
300 in increments of 25:

User: edit regds,firstone
Sys,User: _insert 200,25
0000225 add these two lines
0000250 between 200 and 300
0000275

70 continue adding lines in increments of 100 following line 400, the
user issues anocther INSERT conrand, preceded by a break character:

Sys,User: 0000275 insert 400
0000LU0 moxe data can be entered
0000500 and the systemr continues to promrpt
0000600 with line numkers in increments cf 100
0000700

To change line 300, the user types in, after the line nurker:

Sys,User: 0000700 _context 300, ,only,just
Systen:

To check his results, the user enters:

Sys,Usexr: 1list 300

Systen: FIRSTCNE 0000300 SC FAR JUST TWC RECIONS £XIST
CONCATENATING INPUT RECORDS
The text editor accepts 256-byte records in a regicn data set. However,
most input devices cannct deliver records of this length. Therefore,
the input lines must be kroken for entry at the input device and then
concatenated by the syster.
1f the user wants to concatenate input lines, he must set the implicit

operand, CCNKEC, to Y (the system-surplied default value is N). When

28

the user enters a line of data, and the last nonblank character of the
line is the concatenation character (the system-supplied character is a
colon), the system prompts with a colon and unlccks the keytoard so that
the user can enter the rest of the line. The system joins the twc lines
to make one record; the first character of the second line replaces the
concatenation character in the first line. Fcr exarngle:

User: default conrec=y

Sys,User: edit datasetl,rname=joe

0000100 this line is :

: continued with the concatenation character
0000200 _end

No line numker was issued for the concatenation line; the line has be-
come part of line 100. alsc, a space was left ketween the last text
character in line 100, and the concatenation character. If this space
were not there, the two lines would be joined with no space between "is"
and "continued.®™ The content of line 100 is:

"this line is continued with the concatenpation character™

The user can concatenate records for line data sets as well as for
region data sets. He must remember, however, that the maximum record
length for a line data set is 132 characters; for a region data set, it
is 256 characters {including the region name).

For a line data set, concatenation works the same way. If the user does
not want the cclon as a prcmpt (as is done after line 100 in the examnple
above), he sets CONERMPT=N. For example:

User: default conrec=y,conprmpt=n
Sys,User: edit dataset2
0000100 this line is :

continued
0000200 _1list
Systen: 0000100 TBIS LINE IS CONIINUED
end

The system unlocks the keyboard so that the user can enter the conca-
tenation line.

Caution: If the concatenated record length exceeds 132 characters for a
line data set, or 256 characters for a regicn data set, the 132nd or
256th character is replaced by a ccntinuation character (the systen-
suprlied character is a hyphen). The user receives a diagnostic message
stating that truncation has occurred. The message contains the last
tive characters, entered kefore the record length was exceeded, and the
continuation characters.

ENTERING HEXACECIMAL DATA

When using the text editor, the user can enter data in hexadecimal nota-
tion as well as in character notation. To enter data in hexadecimal
notation, the user precedes the data with a letter X followed by a per-
cent sign (X%). These characters, the system-supplied default for the
HEXSW implicit operand, indicate that the data that follows is in hexa-
decimal notation. The user follows the X% with a string of hexadecimral
data.

0000100 x%clc2c3
The x% may cccur anywhere in the data line:

0000100 defx%clc2c3

Secticn 2: Data Management 29

All characters following the XX on the data line are treated as hexade-
cimal input until the end of the line or until a nonhexadecimal claract-
er is entered (hexadecimal characters are the numbers 0-9 and the let-
ters A-F). When an uneven numkter of hexadecimal characters is entered,
the system truncates the line to the last even character pcsition:

0000100 x%clc2c3c
is truncated tc
0000100 x%cic2ac3
and a message is issued to inform the user cf the truncation.
The processing is the same for the EDIT, REGION, INSERT, REVISE, UPDAIE,
LCCATE, and CONTEXT comrands. See the LIST and CCRRECT cormand descrip-

tions, in Part III, for special consideraticns when using LIST and
CCRRECT.

Note: The x% symbol is never put into the data set; it merely tells the
system that hexadecimal data follows.

Exasple: 7This example shows how to use text-editing commands with hexa-
decimal input; the LIST command, and the CHAR crerxand, are used tc dis-
play the results of the operatioms.

userx: edit hexdata
Sys,Userx: 0000100 akcx%alala3aldkbl
0000200 x%fafktfcfdgal {hexadecimal input ceases

with the first nonhexadecirwal
character, namely G)
0000300 _list

System: 0000100 AERCstu (unprintakle hexadecimal
0000200 GAL characters are ignored on
output when CHAR is defaulted
to C)
User: list char=h
System: 0000100 C1C2C3A1A2A3AUB] (If CHAR=H, all data is
0000200 FAFPRFCFLC7C1D3 printed in hexadecimal
format)
user: list char=m
Syster: 0000100 ARCAlstuBl (If CHRR=M, all unprintable
0000200 FAFEFCFLGAL hexadecimal characters are
User: insert 300 printed as entered, and they
are underscored)
System: 0000300 hex data fcllowsx%alb2cffdas

0000400 _1list 300
0000300 HFX DATA FCLLOWSV

User: list 300,char=h

System: 0000300CACSETU0CUC1E3C100C6L6 C3IL3L6E6E2A1E2CFFDAS
. User: list 300,char=m

System: 0000300 HEX DATA FCLLOWSA1E2CFELv

‘USING THE TEXT EDITOR

fext-editing comands can ke issued only after ECIT or PROCLEF has been
issued. Invoking the text editor does not, however, limit the usex's
access to the command system. He can issue any command while the editor
is active.

Example: The user wants to write and compile a FORTRAN program. Be
smters these commands:

3

default lineno=n
edit source.ftnprog

To avoid ccnfusion when entering FORTRAN statement numbers, the user has
suppressed line number prompting. Following EDIT, his keykoard is
unlocked. The input stream is as follows:

Sys,User: a=0.0
b=17.9

d=a*b

write (2,5)d

5 format (£10.6)
stop

end

The ENL staterment in the last line is a FORTRAN statement. To terminate
text editing, the user must issue the END command, preceded by a break
character. To compile this program, he enters the compiler call, the
name of the program, and ¥ to indicate that the program is cataloged:

ftn ftngrog,y

The program is compiled. He then enters, fcllowing the system prompt
for a corrand statement, a direct call to execute his program:

Sys,User: ftnprog
Systens 0.000000

TERMINATED: STCF

Since the editor is still active, the user can change his source program
with editing commands. He enters:

User: revise 100,200

REVISE deletes the specified lines and requests replacement lines Ly
unlocking the keyboard:

Sys,User: a=11.0
b=14.0

list 0,last

Since LINENO=N, the system responds to the LIST ccrrand by printing the
lines withcut line numkers:

System: A=11.0
B=14.0
D=A*B
WRITE (2,5)C
5 FORMAT (F10.6)
STOP ’
END

Following execution of LIST, the system prompts for a command statement.
The user can recompile and reexecute his program and can make additional
alterations. To write another program, he issues another ECIT command.
To ternminate editing, he issues END.

DATA EDITING

The data-editing commands are used to build and edit VSAM and VISAM data
sets. These commands are not as flexible as those of the text editor.

Section 2: Cata Management 31

The data-editing commands and the system functions they request are
shown in Table 6.

qable 6. Data-editing commands and their functions

| T .
| Cormrand| Function
S U

| DR TA |Build a VSAM or a VISAM line data set.

|
i

|
|LINE? |Cktain lines from a line data set cr from a langquage processor
| {listing data set. Print the lines on SYSCUT.
1
|MODIFY |Insert, delete, or reglace lines in VISaM data set or create
| jvisaM data set.
L i

1]

e e 0 s e e gy

SOURCE INPUT

The system expects source input to follow certain corrands, for example,
DATA, ELIT, MOLIFY, PLI, and PROCDEF. An operand, SYSINX, indicates
whether the source input is expected from SYSIN or from a source list.
If SYSINX=G (this is the system default value), the system expects tc
get input from SYSIN, which is either the terminal for a conversational
task or the SYSIN data set for a ncnconversaticnal task. If you change
this value to SYSINX=E, the system expects to get input from the source
list; and if the source list is empty, the system goes to SYSIN fecr
input. If SYSINX=L, the system goes to the source list only for input.
(Example 3, below, shows how to use SYSINX=L. Refer to "Implicit
Operands™ in Section 6 and to Appendix C for the possible values of
SYSINX.)

If the cormand (for exarple, EDIT) is executed from a PROCLCEF, you may

have created the expected data as part of the PROCDEF. The data inmedi -

ately follcws the command that expects the data. Then, to indicate that

the input is to be taken from the source list, you must issue the
command

DEFAULT SYSINX=E

' before issuing the command that expects the data. If the source list is
empty when SYSINX=E, the system goes to SYSIN for input. The exanples
shown below give some uses of SYSINX.

1. The fcllowing PRCCDEF adds lines of data tc an existing data set.

User: procdef addata

Sys,User: 0000100 peram ps=3%1,52,%3,%84,55,5%6
0000200 default sysinx=e
0000300 edit $1
0000350 insert last
0000400 $2
0000500 $3
0000600 $4
0000700 35
0000800 356
0000900 __end
0001000 default sysinx=g
0001100 _end

when the PROCDEF is invoked (ty entering ALLATR), the values
entered fcr the parameters $2, $3, $4, $5, ana $6 are treated as

32

.0

thor

input to the EDIT command. The values are added tc the data set
nared $1.

2. Por a katch job, a user keypunches a card that contains a PRCCDEF
cormand for ADDATA and a series of other commands that are
separated by semicolons. Other cards in the deck ccntain input for
PROCDEF Y. Here, SYSINX=E.

User: procdef addata;excise 0,last;end;procdef y
param $1,%2,%3
if *$1'='n"; set a=$§2
if *$1°'="'; set a=§3
end

If SYSINX=G in this example, the second, third, and fourth cards
are nct executed as input for the PROCLCEF named Y. Rather, they
are taken as input for ALDATA. 1The system attempts to execute the
EXCISE and END conwrands after ADDATA has been created, but it can-
not because there is no active processor. (A diagnostic is
issued.? .

3. 1If SYSINX=L, the system goes only to the scurce list for input.
The fcllowing PRCCLEF calls the text editor, and it contains a null
line (line 400) as input to the editor.

User: procdef nick

Sys,User: 0000100 default sysinx=1
0000200 edit nickds
0000300 line one of data
0000400
0000500 line three of data
0000600 __end
0000700 default sysinx=g
0000800 _end

After PROCDEF NICK has keen executed, the data set named NICKDS
will contain a line (line 200) that is null.

If SYSINX=E, the systerm ignores line 400.

BULK OUTPU1T

The bulk output commands (see Table 7) allow the user tc transfer data
sets from his virtual storage tc output devices other than the terminal.
The output printer, at the central computer installation, can write data
sets more rapidly than the user's terminal. T and PUNCH put data sets
on tape and cards, which are not available at the user®'s terminal. Fach
pulk ocutput cormand initiates a nonconversational task to accomplish the
data transfer, thereby freeing the user from the need tc mcnitor hkulk
output.

Table 7. Bulk output commands and their functions

T
| Cormand| Function
i

T
|PRINT |[Initiate printout of the specified data set cn high-speed
i | printer.
|

|
|PUNCH |[Initiate transfer of the specified data set tc punched cards.

WT |Initiate writing of the specified data set cn ragnetic tape,
|with tape in format for offline printing.
L

[y P S |

o v —

Section 2: Cata Management 33

SECTICN 3: PROGRAM MANAGEMENT

Language-processing and program control corrands are used for progran
managemrent.

LANGUAGE PROCESSING

The language-processing commands enable the user tc enter his source
language data sets and have them processed into okject mrodules. BHe can
change and correct source language statements during processing. FIL/I
and any processors supported by the PPLI are exceptions to this
Statement.

The user initiates source language processing by issuing the cormand for
the desired language type. The language-processing commands are listed
in Table 8. These commands are descriked in detail in Part III.

Table 8. Language-processing commands

[3 E T

|Cormand| Language Type]
f=—-—=- T ~
| ASM |Assembler language |
} FTN | FORTRAN language compiler l
| LNK - JLinkage editor |
jPLI |PL/1 language compiler |
|COBOL |CCBOL Language Compiler (supported by PPLI) |
-} FTNB | FORTRAN H Extended Language Compiler (supported by PPLI) |
|HASM |Assembler H lLanguage (supported by PFLI) |
{PLICPT |PL/1 Optimizing Compiler (supported by PPLI) |
i i J

A source program is a data set that contains source language statenents.
To be accertakle for language processing, a prestored source program
must have line organizaticn and must be named SCURCE.name. Source pro-
grams are automatically cataloged and retained by the system. For PL/I,
and PPLI sugported processors, any legal name is acceptable.

When source statements are submitted conversationally, or when they forrw
part of the prestored SYSIN of a task, a source program is constructed
with line organization. Each physical line entered into the system, ei-~
ther as a single card or as a single record of the line data set,
becomes. a physical record of the line data set (input length is limited
to 120 characters). Continuation conventicns for ccrbining two or more
" physical records into a single logical statement for a language proces-
sor are specified by that processor.

dote: 'Ihe compilation cf FL/I and EPLI supported programs is not

interactive; you are not prompted for corrections to the source program. -

PL/I processing can only be initiated in a task for which the user is-
sued a LOGCN in 24-bit mode (that is, logon userid,,24).

STEPS IN LANGUAGE PROCESSING
From the user's standp01nt, source-language processing proceeds in one

of four ways. Items .3 and 4 below do not apply to FPL./I or PPLI
processing. : “

34

.0on

uthe.

The task is nonconversational, and the source program is prestored.
The language processor picks up the source statements, line by
line, and processes them. Nc corrections are made; any diagnostic
messages are written for later reference by the user.

The task is nonconversational, and the source rrcgram and the com-
rands governing language processing appear line by line in the
SYSIN data set. In this case, a new scurce prcgram is created as
lines are read from SYSIN. A line number is prefixed to each line
to sexve as the key ky which the line can be identified. Any diag-
nostic messages are written for later reference by the user. The
new program can be modified later.

The task is conversational with a prestored source program. Suc-
cessive lines from the source program are read and processed by the
language processor. Diagnostic messages for a single statement are
written at the terminal, along with the incorrect line, and the
user is invited to enter corrections. To indicate to the user that
he can enter corrections, the system types a pound sign (#) at the
beginning of a new line, and the keyboard is unlocked. The user
may enter a correction line, the first part of which must be the
line number that identifies the line Leing corrected, followed by a
comma and the contents of the line. For exangle:

Sys,User: #500, dc a(example)

This correction line is stored in the program, either as an inser-
ticn line or as a replacement line, and the system requests the
next correction line by issuing #. To delete one or more lines,
the user types, following #:

Sys,User: D,line number
or he can enter:
Sys,User: D,first line numbker,last 1 ine number

Such corrections change the source program perranently. To end
corrections, the user presses the RETURN key in response to #. The
correction lines are processed by the language processor, and if no
corrections are required for them, the next line is taken fromr the
source program for processing.

The user can enter other responses following the system’s invita-
tion. (#) to enter corrections: I or C. If the user types I and
presses the RETURN key, language processing continues without fur-
ther display of diagnostics or invitations to enter corrections.
This response is useful when the user determines that he has too
many errors to correct conversationally. If the user types C and
rresses the RETURN key, he receives all diagnostics, but is not to
be permitted to make corrections until language processing is
completed.

The task is conversational, and the user enters his source state-
rents from the terminal (that is, the source program is not pre-
stored). The language processor, when ready for a source language
line, writes a line number at the terminal, inviting the user tc
enter a line. The line the user types is stored in the source pro-
gram keing created and is alsc passed to the language processor.
The user can modify previously entered statements by typing after
the system-issued line number:

Sys,User: 0000500 %line number ,modification

Section 3: Program Management 35

The modificaticn the user types in after the comma is his insertion
or replacement line. He can delete a line or lines ky typing after
the system-issued line numker:

Sys,User: 0000600 % D,line number
or he can enter:

Sys,User: 0000700 % D,first line number,last line number

The % indicates to the system that a modification fcllows. When
the user enters the next source line that is not prefixed by %, the
previously collected modifications are sent to the language proces-
soxr, and the line is stored in the source grograwm. This line is
picked up when the language processor has finished working on the
modifications.

If the user modifies a statement that has already been handled by

the language processor, compilation restarts automatically. For a
rore detailed description, refer to Assenbler Prcgrammer's Guide,

FORTRAN Programmer's Guide, and Linkage Fditor.

wWhen the language processor issues a diagncstic message, the con-
versational user is prompted with # to enter corrections. He can
enter insertions, replacements, and deletions, as described for a
conversational task with a prestored source program. (See Iterm 3,
above.) He is prompted for corrections until he presses the RETURN
key as the response tc the # request. At that roint, he is invited
t0 enter his next source statement line.

The language processors display the incorrect line. BHowever, when the
incorrect line is part of a continuation line, only the last part of the
line is displayed; this part may nct contain the error. If the user
wants to see the entire contents of the line, he:

1. Presses the ATTENTICN key to interrupt source language processing;
2. Invokes'the text editor and reviews the line in question;
3. 1Issues GO and resumes processing.

When the entire source program has keen collected, the language proces-
sor finishes its analyses of source statements and may issue more diag-
nostic messages. In FCRTRAN or assemkler language and linkage editor
processing, the processor asks the conversational user if he wants tc
make modifications and restart or if he wants to continue processing.

when the user wants to continue, the next phase of the language proces-
sor is executed. If no errors are found that prevent the processcr from
producing an okject program module, the user is inforned.

Finally, the okject module is stored in the user‘'s library (USERLIB),
unless he has defined another job library. If the object module is to
be stored in another jok likrary, this library must be defined by the
user in his current task before he initiates source language processing.
For the FORTRAN or asserbler user, this library must be his most recent-
ly defined library. Supplementary macro instruction likraries, used
during assembly, must also be defined before language prccessing is ini-
tiated. For additional information concerning definiticn cf these
libraries, see Assemkler Programmer's Guide or FORTRAN Programmer's
Guide. The linkage editor places the okject module in the library spec-
ified in its input operands. For additional inforration, see Linkage
gditor.

36

Express Mode: You can use express rmode to compile or assemble more than
one program or to request more than one linkage editor function withcut
repeatedly entering the FTN, ASM, or LNK cormands and operands. (PL/I
uses the continue function to achieve the same result.) See the appro-
priate 0S/VS language programmer's guide for similar options for program

product languages supported by FFLI.

You set LPCXPRSS=Y in your user profile before invoking the language
processor. 1If the task is nonconversational, the language Erocessor
reads the next record from SYSIN, following the corpletion of language
processing. If the task is conversational, the system prompts you to
enter the module name. The language processor assumes the same orticns
for the next scurce prograr entered as those specified when the AsSM,
FTN, or LNK command was last specified. To terminate language process-
ing, you can enter a break character followed by a command or you can
interrupt the language processor when you are prompted to enter the
module name. To initiate language processing again, enter the language-
processing cormand and cperands, but note that you are still in e Xpress
mode (even though a system message said that express mode was
terminated.)

You can interrupt the express mode ty pressing the ATTENTION key. 1If
you want to terminate express mode, set LPCXPRSS=N and issue a GO com-

mand, as follows:

default lpcxprss=n
go

The compilation, assembly, or linkage editing of the interrupted prograr
is corpleted, and contrcol is passeé to the conmand system. However,
when the prccessor encounters an error in the specification of a rodule
name, a diagnostic message is issued, and language prccessing is termi-
nated. Express mode is still active until LPCXPRSS=N.

Listing Data Sets

The user has complete control of the listings that are Erinted. Tre
system action for the listing data set varies, depending on whether the
symbol given as the module nawe has been rreviously used. When ttis
assembly, compilation, or link-edit is the first cne in which the symkol
is used, the system estaklishes in the user's catalog a generation data
group (called LIST.symkcl) and maintains two generations. The systen
also specifies that when the number of generations exceeds two, the old-
est generation is to be erased. When the listing data set for the cur-
rent run has been produced, the systen catalogs it and rakes it a new
generation of the LIST.symbol generation data group.

When the symbcl has been used previously as a module name, the syster
adds the listing as a new generaticn to the existing generation data
group. For example, the third listing data set for a given symkol
vecomes the latest generation (0); the second listing becomes the (-1)
generation; and the first listing is erased.

The user can change the numker of generations that are raintained in the
generation data group associated with a given symbol. Assume he has
been working with a module called MYPRCG, and that he has two genera-
tions in his LIST.MYPROG generation data group. He can change the num-
ber of generations raintained in LIST.MYPROG.

Exanples: .

1. Catalog the two generations as separate data sets (for this exarmr-
ple, MYPROG1 and MYPRCG2).

catalog list.wyprog(0),u,,myprogl
catalog list.myprog(-l),u,,myprogz

Section 3: Prcgram Management 37

2. CLelete the system-defined generation data group, LIST.MYPRCG.

delete list.myprog

3. CrCefine a new generation data group called LIST.MYPROG with five
generations, remove the oldest generations, and erase them.

catalcg gdg=list.myproq,5,0,y

4. Add the two temwporarily cataloged generations to the new
LIST.MYPROG generation data group.

catalcg myprog2,u,,list.myprog(+1)
catalog myprogl,u,,list.myprog(+1)

After the second CATAICG command is issued, MYPRCG1 becomes the
latest (0) generation, and MYPROG2 becomes the (-1) generaticn;
three more generations can ke stored before MYPROG2 will ke erased.

To obtain a printout of the desired listings after language processing,
the user issues a PRINT command with a data set name:

LIST.symbol (0)
for thetlatest listing or he issues:
LIST.syrbol(-1)
for the last previous listing, if two generaticns were specified.

The user can let the automatic erase logic associated with the genera-
tion data groups remove his unwanted listings, cr he can issue the ERASE
command or the ERASE option on the PRINT command to remoOve one Or more
generations. (Refer to the descriptions of these ccmmands in Part III.)

Programming Notes: The user can create source data sets and correct
assembly or ccmpilation errors with the text-editing commands. By leav-
ing the text editor invoked while he assembles or compiles a prograr,
the user can make changes after assembly or ccrpilaticn is complete.
Refer to Section 2, Text Editing, for a descrirtion of the text editor.

PROGRAM CONTROL

Program control system (PCS) commards provide the user with great flexi-
bility for interacting directly with the execution of his programs.
These commands, and the system functions they request, are shown in Ta-
ble 9.

Caution: Some of these commands are restrictive inm the class of virtual
storage they reference. The user may use all of these commands to ref-
erence his control sections that have keen assigned to private read/
write storage. However, a control section that has the read-only attri-
bute may be referenced in all the commands except SET. Public nonprivi-
leged CSECTs may be displayed (via DISPLAY) or dumped (via DUMF), but
the user cannot reference a public CSECT in a SET, AT or TRAP comrand.

A user may never symbolically access nonprivileged or privileged system
CSECTs. Any violation of these restrictions will result in a diagnostic
message and rejection of the command.

38

dowever, if a CSECT having a system or privileged attribute is loaded
from USERLIB or from a jok likrary (JCBLIFE), all attrikutes are ignored.
Private reads/write storage is assigned to the CSECT, and the systenr does
not recognize any of the above restrictions.

Caution: PCS commands are generally more difficult tc use with PI/I

programs or programs generated by PPLI sugpcrted cormpilers. Since nc
ISD is produced by any of these processcrs, symbolic nares may not ke
used. In addition, actual hexadeci mal displacements from the module/
procedure name are difficult to calculate since the name refers tc the
actual entry point of executable ccde. This entry pcint may be at vari-
ous displacements in the olject code although the listing might indicate
displacement zero. However, once the correct instructicn is located in
the object code, an AT statement and most other DPCS statements may be
used. Complicated PCS statements should be avoided.

“he user can employ PCS ccmmands to:

e Explicitly and implicitly locad and unload his programs.

¢ Initiate execution of his programs.

* Request output of the contents of data fields, instruction loca-
tions, and registers at any time during execution of his prograr.

* Modify instructions and variables within his prcgrar at any stage of
execution.

* Specify locations within his program where execution is to be
stopped or started; when execution has been storgped, the user can
issue additional commands tefore he resumes execution.

* Establish logical (that is, true or false) conditions that allow or
inhibit execution of other commands.

e Perform arithmetic computations.

Section 3: Program Management 39

Table 9. PCS commands and their functions

-
jConrmand

Function

+—

b——
|AT

BRANCH

g
E

DISPLAY

]
o]
e
r

Q
[}

b
"y

z

QUALIFY

REMOVE

o)
=]
2z

0
o]
)

[P ot e . it S i oo P b O S i, S i s D s NS i It s o NBAD 00O g P i s S s SO s S g S . st AN £, i S s R S s WA S P
'8} j

|Inform the user when execution of the prcgram has reached a
|designated instruction location or make the statement that
| follows this command dynaric.

|Dynamically change the control path cf a pregram or resume
| execution at a different location.

|Load and pass parameters to an object module and execute.

| Present the values of variables, the contents cf machine reg-
|isters, and the specified virtual storage locations to user's
| SYSOUT.

|

|Present the values of variakles, the contents of machine reg-
|isters, and the specified virtual storage locations to the
|task's PCSOUT data set.

I

|Resume executicn of a previously interrugpted program.

|Make the following statement conditicnal.

]

| Place an object module in the user's wvirtual storage without
|initiating execution.

|Allow the user to designate, before referring to group of
Jinternal symbols, the program in which the specified symbols
|are defined; thereafter, there is no need to explicitly quali-
|fy symbols.

I

|Selectively delete the previously entered dynamic statements
| (that is, those that include AT).

|

|Initiate execution cf the loaded okject mcdule; resume execu-
jticn cf the interrupted program; lcad and initiate execution
|of the object module. {Restricticns cn the use cf RUN are
|given in its command description in Part III.)

|

|Change the contents of machine registers, the values of pro-
|gram variakles, the virtual storage locations, or the comrmand
| symbols.

i

{Interrupt execution of the user's program; disglay the in-
{struction location or the FCRTIRAN staterent nunker where in-
jterruption was handled (if LIMEN=I).

I

|Requests notification when executicn of an okject prograr
|causes certain events to occur. '

jRemove the specified object module frcw the user's virtual
|stcrage. :

M e e e it T . s oo S it s O et it T i . — o W . st onats S e a2 B iy O i MR T Gt st S s D i gt S s NS, ey T) pn i)

S S USSP, -

40

USE OF COMMAND STATEMENTS

PCS cormands are often conveniently expressed in command statements.
For purposes of this discussion, three types of command statements are
considered: dynamic, immediate, and conditional.

DYNABMIC STATEMENT: This is a command statement that contains an AT or
TRAP; the AT or TRAP should appear first in the statement and should be
the only AT or TRAP command in the statement. Commands that precede A1
or TRAP are executed immediately; commands that follow AT or TRAP are
not executed until control arrives at the instruction lccation designat-
ed by the AT command, or the TRAP event occurs. Cnly these conmrands can
fcllow AT or TRAP in a dynamic statement:

BRANCH GO
CALL IF
CISPLAY SET
DUMP STCP

I1f any other command aprears in a dynamic statement, a diagnostic mes-
sage is issued. Several dynamic statements can be effective at the same
instruction location; the statements are processed in the order in which
they were issued. A dynamic statement has the form,

AT location;command
TRAP operands;command

{MMEDIATE STATEMENT: This is a command statement that does not begin
with an AT. Inmediate statements are executed when they are entered.
any cormand except AT may appear in an jmmediate statement.

CCNLITIONAL STATEMENT: This is a command statement that contains an IF.
Both inmediate and dynamic statements can be conditional. The condition
that IF specifies must ke satisfied before the cormands that follcw are
executed. Commands preceding the first IF corrand are executed without
regard to IF. When more than one IF appears in a conditicnal staterment,
the cormands making up the statement are executed from left to right un-
til an IF that specifies an unsatisfied conditicn is encountered, or the
end of the command statement is reached. BAny command may appear in a
conditicnal statement. & conditional statement has the form,

1F condition;command

PCS APPLICATIONS

To load an object module, the user can issue a LOAD, CALL, or QUALIFY
comrand or he can issue a direct call. (Refer to the descriptions of
these commands in Part III.) <The loading of one module may cause anoth-
exr rodule that is implicitly referenced by the first module to be
loaded. For example, when a ICAC ccrmmand is issued for module FGMA,
which inplicitly references module PGMB, PGMB is also loaded.

Following LOBL, the user may enter immediate command statements tc alter
the progran before execution kegins or dynamic statements to alter the
program during execution. The CAIL command or direct call initiates
execution for a loaded module, or loads and executes an unloaded nodule.
To modify a program after it has been called (via CALL or direct call),
the user presses the ATTENTION key and enters his ccmrand statewents.
This procedure is not recommended for use of dynamic statements, since
execution may have progressed past the point referenced by the AT ccr-
mand. He resumes executicn with the GO or ERANCH ccrrands.

Wwhen the user references an external symbol, with the (QUALIFY commrand,
in a program that is not loaded, the program is loaded, and the user can

Section 3: Program Management 41

proceed as if he had entered the LOAD command. When the user references
an external symbol that is not in any of the rrcgrams in the likraries
available tc him, the symbol is assumed to be a command symbol, which
was defined via the SET command.

If the user has previously identified an external nare via the CURIIFY
comrrand, he can refer implicitly to locations in the identified mcdule.
ne simrply omits the external name from the PCE command operand. Fcr ex-
ample, to display the lccation four bytes from CSiCT PGN, the user can
enter:

display pgm. {4)

or he can enter:

gualify pgm
display .{&)

Tne effects of the QUALIFY command last until the user issues another
QUALIFY command or until he unlcads the module. So, later in his task,
he can still use the implicit form for addressing. This implicit form
applies to all PCS comrmands.

Note: Any PCS command causes a module to ke loaded if tne user enters
an external name as the operand of the PCS ocommand. (SET PGM. (4)='a"
causes PGM to be loaded).

To display a location offset from zero, the user can enter:
display L'0'. (4)

or he can enter:
display .(4)

if no external name has keen identified by a CUALIFY command.

After execution has ended, the user can again issue command staterents,
or restart execution from a specified entry point by using the Call
command.

The user can refer to internal program symbols in any loaded object
module for which he requested an internal symbcl dictionary (ISD) when
that module was compiled or assembled; otherwise, he can reference only
external symbcls.

Dynamic statements remain enforced until a REMOVE ccrmand deletes them
or until a program referenced ky a dynamic statement is unloaded. 2
program is unlcaded by an UNLOAD command or when the only program that
references it is unloaded. For example, if the loading of PGMA caused
PGME tc be loaded, unloading PGMA causes PGMB to be unloaded if PGMA is
the only loaded module that references PGMB.

Note: 1If PGMA is referenced in any PCS command, unloadlng PGMA removes
all dynamic statements that refers to it during the session. If PGMA is
not referenced in a PCS command, kut PGMB is, all dynamic statements
referencing PQMB are removed only if PGMA is also unloaded. A diagnost-
ic message is issued when dynamic statements are removed because &
module is unloaded.

TYPES OF OPERAND SPECIFICATION
The user has broad addressing capakilities for referencing his programs

by using variables, constants, and the dynamic statement counter as

42

operands for PCS commands.

VARIAELES: These are designated by their (1) symbolic names, (2)
hexadeciral locations, cr (3) register numbers.

1. Syrbolic names: PCS commands use either extermal, internal, or
corrrand symbols.

¢ External symbols are defined within a rrogran for reference dur-
ing load or execution. FCRTRAN COMMCN ELOCK names, functicn
names, subroutine names, and the names of assembler language
ENTRY and CSECT statements are external symbols. For examgple, an
assermbler program named PGM has these characteristics:

Two control sections, named PGMCS and PGMPS.

Two ENTRY statements, named PGMEP and PGMEX. These, then, are
valid external symkols:

PcM

PGMCS
PaMPsS
PGMEP
PAMEX

Four external symbols are assigned to every FORTRAN okject module

module name (for example, FINPGN)

CSECT name (for example, FTNPGM#C)
PSECT name (for example, FINPGN#P)
module entry point (for example, FINPGMH#E)

In PCS commands any of the external symbols may be referenced,
and also any function subroutine or COMMON blcck names. Variakles
referenced by external symkbols have undefined type attributes.

e Internal symbols are defined within a single assembly or ccmpila-
tion; FORTRAN statement numbers, FORTRAN data names, and syrkols
defined by the assembler statements are internal symkols.

The user may refer to internal symbols cnly if he requested an
ISD when his program was assembled or compiled. Also, he nust
qualify each internal symkol to specify the program in which the
symbol was defined.

Note: Wwhen an ISD is requested for a FORTRAN compilation, opti-
mur code is not generated.

An internal symbcl is gqualified explicitly by preceding it with
the name of the program in which it was defined and a period.
When the defining program has not keen processed by the linkage
editor, only one level of qualification is required. Thus, for
internal symbol IOSR, defined in program PGM, the qualified sym-
bol is:

PGM.IOSR

Section 3: Program Management 43

64

When the defining program has been processed by the linkage edi-
tor, two levels of qualification are required. The name of the
program output by the linkage editor (first level), followed by a
period; the original name of the defining rrogram (second level),
followed by a period; and the internal symbol. Thus, for intern-
al symbol IOSR, defined in program PGM, which has keen processed
by the linkage editor into new program LEPGM, the qualified sym-
bol is:

LEPGM.PGM.IOSR

An internal symbol may also be qualified implicitly if its refer-
ence has been preceded ty a QUALIFY command containing the neces-
sary qualification. If internal symbol AEX has keen defined in
program PGMA and a QUALIFY PGMA command bhas been entered, the
internal symbol may be referenced by entering ABX alone.

Note: If a program processed by the linkage editor contains an
internal symbol that is identical tc an external symbkol in ancth-
er program, explicit qualification is necessary tc reference the
internal symbol.

e Command symbols are inderendent cf the user's grcgram and are de-

fined bty a SET command, which designates a symbol that the system
cannot recognize as either an internal or external symbol. Fcr
example, in the command SET R=5, if R is neither an external nor
internal symbol, the system designates R as a command syrbcl with
a value of 5. The command symbol may now be referenced or mwodi-
fied by subsequent FCS commands.

when a command symkol has keen defined, it is addressable for the
user's entire terminal session; it is not affected by unloading
one cf his programs. The conmand symbcl wmay be retained for
future terminal sessions Ly using the PRCFILE command (see Sec-
tion 6).

Note: If a program is loaded after a command symbol is defined,
and the command symkol is identical to an internal or external
symbol in the program, the command symbol is not recognized until
that program is unlcaded.

The types of internal and external symkols are discussed below.

%$CSECT and %COM are two special symbols that may be used to refer

to the unnamed assembler language contrcl section and the FCRTRAN
COMMNON BLOCK, respectively. %CSECT may be used cnly as an
internal symbol; %COM may be used as either an internal or exter-
nal symbol. When multiple unnamed contrcl secticns are loaded
internal symbols (including %CSECT) are referenced in the last-
loaded@ control section even when the internal symkcl is explicit-
ly qualified by the module name.

FORIRAN statement numkers are written by the user in the original
source program and should not ke confused with the line nurbers
that are assigned to each scurce line ty the compiler. State-
rents must be referred to ty their numkexs, nct ky line nurnkers.
Fxecutable statement numkters, used as internal symbols, c<an be
incremented to refer to unnumbered statements. The increment
mrust be an integer greater than 0, enclosed in parentheses, that
inrediately follows the statement number. The increment desig-
nated by (1) refers to the numbered statement itself. Therefcre,
86 (1) refers to numkered statement 86; 86(2) refers to the next
executable statement fcllowing staterent 86€.

Executable statements are arithmetic and logical assignment sta-
terents, control statements, and I/0 statenents. Nonexecutakle
statements are specification statements and subprogram state-
ments; they should not be referenced.

Examples of FORTRAN statements:

10 READ (1,20)A

20 FORMAT (F6.2)
B = A*3.14
WRITE (2,20)A,B
GO TO 10

The third statement (B = A*3.14) is referenced ky using 10(2).
The FORMAT statement cannot ke referenced because it is not
executable.

A statement number refers to a statement®’s first line and all of
its continuation lines; continuaticn lines can nct ke designated
separately when using increrented staterent nurbers.

The integer 0 may ke used to refer to a program's first execut-
able statement when the first executable statement is not numker-
ed. In the preceding example, if the READ statement were unnur-
kered, 0 could be used to refer to it; 0(2) would then refer to
the second executakle statement (B = A*3.14).

Sukscripted symkcls are internal symbols that refer to elements
within an array. B sukscript to an internal symbol must be ei-
ther an integer constant, an integer variable, or an integer ari-
thmetic expression.

Symbols used in subscripts mray contain subscrigts, and subscript
symkcls may contain offsets; however, the subscript value cbtain-
ed when the various nests and expressions are evaluated must ke
an integer. Five levels of nesting (subscript and subscript,
subscript and offset, or offset and offset) are allowed. The
user may not refer to dummy FORTRAN arrays in a FCS statement.

If it is necessary to refer to a shared array, references to the
array should be gqualified by the module that contains the array,
that is, the main routine.

The subscript is enclosed in parentheses, following the internal
symbol maming the array. One subscript may ke used for each
dirension of the array; multiple subscrirts are segarated ky com-
ras. A diagnostic message is issued if an evaluated subscript
(1) is not an integer greater than 0, cr (2) is larger than the
dimensions defined for the array.

Exarples:

a. This two-dimension array contains three rows and five colurns
and is defined by the internal symbcl ARRAY.

2 0 -7 5 i3
-2 1 15 -6 8
0 1 3 9 -5

AKRAY (2,4) refers tc the array element at the intersecticn
of row 2 and column 4.

ARRAY (2,4) = -6

Section 3: Program Management 45

4é

ARRAY (4,4) would be invalid, since it is outside the array.

Consider this sukscripted symbol:
ARRAY (ARRAY (1,1),2RRRY (3,3))

The subscript contains subscripted symbols that must be
resolved first.

2
3

ARRAY {1,1)
ARRAY (3,3)

When these values are sukstituted in the original expression,
the result is,

ARRAY (2,3) = 15

Assume this takle is defined by the symbol TAELE, and each
item in the takle contains a length attribute of 1.

TABLE 5
TABLE+1 3
TABLE+2 1
TABLE+3 4
TABLE+Y 2

Now consider:

ARRAY (ARRAY (TABLE. (1),TAELE. (4)),ARRAY (TABLE.(2),
TABLE. (3)))

This subscrigted symkol has a subscript with an offset that
is nested within the subscript. Evaluation of the sub-
scripted symkol starts inside the nesting and works ocutward.
TABLE. (1)=3
TABLE. (4)=2
TABLE. (2)=1
TABLE. (3)=4
Substituting the values in the expression,
ARRRAY (ARRAY (3,2),ARRAY (1,4))

reduces the expression to one similar to Example b. The

.final value is determined by substituting the values fron

ARRAY in Example a:
ARRAY (1,5) = 13

The subscripted symkol to be evaluated is:
ARRAY (1+X/Z ,X-Y*Y)

Assume that X=6, ¥Y=2, and Z=4. The arithmetic expressions
rmust be evaluated first.

1+X/2 = 1+6/74 = 1 + 1 = 2
(Note that in integer division PCS ignores the remainder.)
X-Y*Y = 6-2%2 = 6 -~ 4 = 2

Therefore the expression reduces tc:

ARRAY (2,2) =1

Note: FORTRAN dimension variables and symkols, defined Ly
asserbler language DC or DS statements with durlication factors
cr multiple constants, are arrays. Wwhen an array has an adjust-
akle dimrension value, the value established at the latest execu-
tion of the subprogram is used. Assembler arrays are limited to
a single dimension that is equal to the duglicaticn factor multi-
plied Lty the numker of multiple constants.

Offset, length, and type reference a specific byte following a
symkolic address or hexadecimal address. »2n offset of 1 refer-
ences the next kyte keyond the symbolic address. The nunber of
bytes that constitute the offset is written after the symbcl cr
address and its offset. The form is symkol (cr address), gperiod,
left parenthesis, offset, comma, length in bytes, comma, type of
output format, right parenthesis:

SYMBOL . (OFFSET ,LENGTH,TYPE)
ALDRESS
An offset may be one of the following:
integer, hexadecimal, or address constant
integer or hexadecimal variatle
integer or hexadecimal arithmetic expressicn

Length must be a positive integer.

TYPE controls the ocutput format; it is specified as:

C -- character format; a string of characters is displayed
with all unprintable characters regresented by periods.

I -- integer format; a string of from 1 to 10 integers rre-
ceded by a sign (for example, +1234567890).

B -- binary format; a series of binary digits in bit represen-

tation. The LENGIH attribute fcr a kinary constant con-
tains the length, in bytes. (In a SET command, this is
specified in the form B'11001010', where each digit
represents a bit.)

F -- floating-point format; for single precision values, this
specifies 8 digits in floating point format (that is,
1. XXXXXXXXE$XX). For double precisicn, this specifies 16
digits in dcuble precision format (that is,
O XAXXXKXXXXXXXXXXXD£XX) .

§ -- symbolic assemkler language format; as output data, this
is a header and one or more lines of assemktler language
code:

Loc INSTRUCTION LABEL CPC OPERAND SYMBCL
01 00022 4330 FOu42 NEXT IC 3,66(0,15) SWITCE

If the user does nct specify the output format, the data is dis-
played in hexadecimal format. If the user specifies a range and
uses two different output formats in the statement (for exawple,
PGM. (4,,C):PGM.(7,,I),) the last form specified is used.

Note: The module must have an ISD if the user wants to specify
TYPE=S.

In a SET command, the TYPE attribute is ignored; the data is

entered as it is specified on the right side of the equal sign
(for example, SET PGM. (4,,I)="ARCD') results in character data

Section 3: Program Management 47

being entered; the I, on the left side of the equal sign, is
ignored.

The rules for nesting offsets are the same as for sukscripts.
However, a symbol cannot have both a subscript and an offset.
Thus:

TAG. {ARRAY(2,3))
is a symbol with offset and is legal, but:

TAG. (4) (ARRAY (2,3))

descrikes an invalid symbkol that has both a subscript and an off-
set at the same nesting level.

Examples:
a. The twenty-seventh byte beyond LCATR would ke expressed as:

data.(27)
or it would ke expressed as:
data.(x"1b")

If a length of four bytes is to be attrikuted to the data at
the twenty-seventh byte from DATA, the expression would be:

data.(27,4)
or it would ke:
data .(X'1lk*',4)

b. The user may reference data in a dummy control section
{(DSECT) Ly using the register offset. Assume general regist-
er 5 contains the address of the DSECT, and the field toc be
referenced has the symbol DATA associated with it in tlre
DSECT; the lccation desired is:

data. (5r)
Again, explicit length may be supplied:
data.(5r,8)

c. A four-byte field that is the twentieth fullword field in a
- takle whose address is A'DATA' would be expressed as:

.{a'data'+20%4 ,4)

Note that the symbol to the left of the pericd is not re-
quired and is assumed to ke location 0 if unspecified and no
gualification exists.

d. It is possible to achieve a full virtual storage dump by
specifying the range from location 0 to FFFFFF (for 24-bit
addressing) and 0 to FFFFFFFF (for 32-kit addressing) as off-
sets in the operand field of the DUMP command, for example:

dump .{x'0"):. (x"f£Ef££F")

Hdexadecimal locations: PCS commands can refer to the contents of
Jocations. The hexadecimal address of the lccation referred to is
enclosed in apostrophes and is preceded by L. The referenced vir-
tual storage location must have been assigned to the user's
storage.

Examples of hexadecimal addresses:

L'B0OCO"
L*9FECO*
L'9100°*

Note that a hexadecimal address can be used in place of a syrmbol
for use with offset.

L*0*'.(X*800°,6)
L*1AF000". (X"24° ,X"18"*)
L*1AF000°. (,24)

Registers: PCS commands can refer to any of the general or
floating-point registers. A reference to a general register is
written as nR, where n is an integer from 0 to 15 that identifies
the register.

2 reference to a single-precision, floating-pcint register is writ-
ten as nk, where n is 0, 2, 4, or 6. A double-precision, flocating-
point register is referenced ky writing nb, where n is 0, 2, 4, or
6.

Examples of register references:
3R rerresents general register 3

ZE represents floating-point register 2, single-precision
oD rerresents floating-point register 6, double-precision

CONSTANTIS: Six classes of constant are used in PCS commands: (1)
integer, (2) character, (3) hexadecimal, (4) floating-point, (5)
address, and (6) binary.

1.

Integer constant may ke written as a signed or unsigned decirmal
integer. The length of an integer constant is not explicitly de-
fined, but is determined from the expression in which the constant
occurs. If the value of the number exceeds the permissible size,
as determined by context, the number is truncated cn the left.

Examples of integer ccnstants:

9327
-641
+1066
-67

Character constant consists of letters, decimal digits, and special
characters enclosed in apostrophes. Also, any remaining unused
combinations of the 256 valid card-punch combinations may be desig-
nated as a character constant. BAn apostrcghe, used as a character
in a character constant, must ke represented by two apostrophes
even though only one is in storage. If the length of the constant
is not appropriate in the context used, the constant is truncated
or is filled with klanks on the right.

Exanples of character constants:

Section 3: Program Management 49

50

'$3.98°
'HOW ARE YOU?*
'‘I''M FINE'

Hexadecimal constant is one or more hexadecimal digits (0 through 9
and A through F) preceded ty an X and enclosed in apostrophes. A
hexadecimal constant is either truncated or filled with zercs at
the left if its length is inappropriate for the ccntext.

Examples of hexadecimal constants:

X'76543210°*
X'FFFFFFFF"'
X'ACE*
X*9FEC3*

Floating-point constant is a signed or unsigned decimal number in
the principal part of the constant, which can be written with or
without a decimal point. The decimal point can be at the beginning
or end in any positicn within the decimal nurber, as appropriate.

An exponent specifies a power of 10 by which the principal part is
multiplied during conversion. The decimal point may ke omitted if
an expcnent is specified, in which case it is assumed to be located
at the right-hand end of the decimal number. The exponent of a
floating-point constant is either an E or a L, fcllowed by a signed
or unsigned decimal integer. An E indicates a single-precision
murker; a D indicates doukle-precision.

The exponent may ke omitted if the principal part contains a deci-
mal point. When used, the exponent must fcllow the principal part
of the constant. The magnitude of the exponent must be within the
range of approximately -75 to +75. If the exponent exceeds the
maximrum, +75 is assumed. If it exceeds the minimur, 0 will be
assumed.

A floating-point constant is converted to a normalized floating-
point number. If the exponent of a floating-point numker is
oritted, the floating-point nurber is assumed to ke
single-precision.

All of the following floating-point numbers are equivalent and are
converted to the same floating-point binary number:

3.14159
31.4159E-1
314159.E-5
314159E-5
.314159E1

Address constant consists of the character A followed by a symbol
enclosed in apostrophes. The allowable symbols are external symbol
with cr without offset, internal symbol with or without offset, and
subscripted variable.

The length of an address constant is always four kytes, and its
value is the address assigned to the symbol. BAddress constants are
evaluated at the time they are used. The current value of any
variakle referenced in a sukscript or offset is used in corputing
the value of the address constant. BAs a result, the value of an
address constant that contains a subkscripted or offset symbol nay
vary during program execution.

Examples of address constants:

A'PMG.TAG"

A’ NAME'
A'ARRAY(I,J)'

A' FTNPGM.100(36)*
AX.(4096) "

6. Binary constant is written as a string of kinary digits enclosed in
apcstrcphes and preceded by the letter B. Eight bits comprise one
byte of data. When the user displays binary data, the data is dis-
played as a series of bytes.

Examples of binary constants:

B'10001100"

B'01' (displayed as B'00000001°)
BE'10' {(displayed as B'00000010°)
B*1010' (displayed as B"00001010")

When the user enters a binary constant on the right side of the
equal sign in a SET command, and if LIMEN=I, the SET operand is
displayed for review in hexadecimal notation. For example, if the
user enters

default limen=i
set pgm.(4,2)=b"1111000011111111"

the system displays
PGM. (X"4°,2)=F0FF
to confirm the operaticn.

COUNTER: A counter, associated with each dynamic statement, is incre-
mented by 1 for each occurrence of the events specified in the state-
ment. This counter must be referenced ky the special character % when
the AT cr TR&P command is entered. (For example, AT X;LCISPLAY¥%.) The
value of the counter may ke displayed or dumped, and can be used in for-
ming expressions. The counter that is displayed or dumped is the one
associated with the AT or TRAP statement in which the ccunter is
referenced. Since % is not a user's variable, it cannot be changed by a
SET command. (See "Examples Using PCS Cammands," Example 3, later in
this section.)

OPERAND DEFINITIONS

The ternms used to descrike the operands of PCS conrands are (1) data
location, (2) data field, (3) expressions (arithmetic and logical), (4)
instruction location, (5) link-edited module name, (6) object module
name, and (7) statement number.

DATA LOCATION: A symbol, a hexadecimal location, a register, or the
special counter (%) can ke a data location. Foth fully defined and
incompletely defined data locations may be referenced.

Fully defined data locations have type and length attributes. Such
locations include internal symkols without offsets, subscripted symbols,
and floating-point registers.

Incompletely defined data locations lack either the type attribute or
the length attribute. A length attribute can be assigned to a symbol
with offset. The offset follows the period and left parenthesis and is
followed by a comma and a length. Length is specified as an integer or

Secgtion 3: Program Management ' 51

a hexadecimal constant that is greater than 0. The attribute is closed
with a right parenthesis.

Examples of symbols with offset and explicit length:

Y. (X*FCC',4)
Z2.(12,8)
A.(2,X"AF")

Wote that the offset may ke defaulted and a length specified:
Y. (,24)

A length attribute may be assigned to a hexadeciral lccation by writing
a colon that is followed Ly a larger hexadecimal location. A diagnostic
message is rroduced if any locations within the range have not been
allocated to the user's virtual stcrage.

Exarples of hexadecimal data locations with explicit length attributes:

L'9FECO" :L"9FEC7*
L'9100':1°9103"

DATA FIELD: A contiguous group of storage locations whose contents are
to ke displayed or dumped is a data field. These locations may be in
the user’s virtual storage or in registers. 2 data field may ke a data
location, an array, a ccntrol section, a symbolic range, a quoted str-
ing, or an arithmetic expression.

An entire array is specified as a data field for display or dumping if
its name is written as an internal symbcl withcut subscrigting. Simi-
larly, a CSECT name, written as an internal symbol without an offset,
specifies the entire CSECT as a data field; so does a CSECT name written
as an external symbol without an offset.

A range oOf registers is specified as a data field by writing the nurnbers
of the first and last registers to be displayed or dunred, separated ty
a colon, and followed by the character that identifies the register
type. The register type< are:

general registers
floating-point registers with fullwcrd fcrn
floating-point registers with doubleword forn

o h

R
E
D
When the user specifies a range, general register 0 follows general

register 15, just as floating-point register 0 follows floating-pcint

register 6.

Examples of specifying a range of registers are as follcws:

0:4R general registers 0-4

14:3R general registers 14 and 15, then registers 0-3

2:6E floating-point registers 2, 4, and 6 in fullword format
6:2D floating-point registers 6, 0, and 2 in doubleword fornat

A data field may be specified ky a symbolic range that is written as two
symbols separated by a colon. The storage location cf the symkol to the
right of the colon must be greater than the location of the symbol cn
the left. If not, a diagnostic message is issued. EBcth symbtols used to
specify a data field must ke either external symbols or internal symr-
bols. Cne range may not be specified by an internal and an external
symbol. When two internal symkols are used to specify a data field,

52

both must have been defined within the same CSECT. External synbol
ranges must be contained within user-assigned storage. Either or both
of the symbols used to specify a data field may be offset, but may not
have explicit lengths.

Examples of data fields specified by symbolic ranges are:

A.BY:A.BX
PGM.LSF :PGM.LSA

ISF:LSA (if preceded ky QUALIFY command)
ABX:ABX.(X'FFFF"')

ABY:ABY.(256)

ABY. (24) :AEY.(256)

EXPRESSIONS: PCS command expressions are either arithmetic or logical.
They are fcrmed by using these operators: :
Qperator Meaning
Arithmetic
+ Addition
- Subtraction
* Multiplication
/ Division
Logical
- Logical NCT
& Logical AND
Logical OR
Relational
> Greatexr than
< Less than
= Equal to
>= Greater than or equal to
<= Less than or equal tc
= Not equal to
=> Not greater than
-~< Not less than
1. Arithmetic expressions may be used as sukscripts cr cffsets, as

values to which variables are to be set, as values tc ke compared
when you use relational operators, or as values to be computed and
displayed.

The least complex arithmetic expressicn is a single constant or
data lccation. hLowever, an arithmetic expression may include any
nurber of constants, data locations, and simpler arithmetic expre-
ssions that are related by arithmetic operators. The special char-
acter % may be used in an arithmetic expression in a dynamic state-
ment to reference the dynamic staterent ccunter.

These rules must ke followed in the formation of arithmetic
expressions:

a. Any arithmetic expressicn rmay be enclcsed in parentheses.

b. Arithmetic elements or expressions may be connected by arith-
wmetic operators to form other arithmetic expressions, provided
that no two arithmetic operators agppear in sequence and no ari-
thretic operator is assumed to be rresent.

c. An arithmetic element or expression preceded by a sign (+ or =)

is permitted; the operators * and / must be preceded anmd fol-
lowed by elements or expressions cr koth.

Secticn 3: Prograr Management 53

54

d. All data locations connected by arithmetic operators must have
lengths of 256 Lkytes or less and be aligned cn the arprorriate
kcundary.

Arithrmetic expressions that do not contain terms that are in paren-
theses are evaluated left to right, in this order: (1) multiplica-
ticn or division; (2) addition or suktraction. For example, the
arithmetic expression:

PGM .A+PGM.B*PGM.C-PGM.D
is evaluated as:
PGM.B*PGM.C (denote result by X)

PGM.A+X . (dencte result by Y}
Y-PGM.D

Arithmetic expressions that ccntain terms in parentheses are evalu-
ated Lky treating the innermost term in parentheses first. After
all terms in parentheses have Leen evaluated, the remaining cpera-
tions are performed in the same way as is done for expressions not
in parentheses. Fcr example, the arithmetic expression:

PGM.A+{(PGM.B~EGNM.C)Y*EGM.LC/PGM. E
is evaluated as:

PGM.B-PGM.C {(denote result by X)

X*PGM.D (denote result by Y)
Y/PGM.E (denote result ky Z)
PGM.A+Z

when division is performed in an integer arithmetic expressicn, the
integer part of the quotient is retained, and the fraction is dis-
carded. Therefore, if 13 is divided by 2, the answer is 6 (13/2=
6). The expression A*B/C may yield a different result than the ex-
pressicn B/C*A.

Fox example, where R=8, B=6, and C=4, the first expression is
8*6/4=12
and the second expression is
6/4%8=8
Examples of valid arithmetic expressicns:
1.E-5
PGM.X. (&)
PGM.X/PGM.Y~-1
PGM.I*{(PGM.J+PGM.K)
-Z2.(,4)/%
The arithmetic method used to perform the operation is based on the
type of the variables in the expression. Integer, floating-point,
or logical arithmetic can be used in evaluation.
An undefined expressicn contains all undefined variakles (for exam-

ple, external symbols and hexadecimal locations), or it contains
two variables of different types.

If an undefined expression is used in a sukscript, it is assured to
be integer. If an undefined expressicn has a variatle that is
longer than four kytes, the expressicn is assurned to ke floating-
point. The user is prompted in all other cases to provide the type
of arithmetic to be performred.

An exrression containing a constant can never ke undefined. The
data type of the ccnstant is used to define the expression.

Logical expressions are used in a conditional statement and take
any of these forms:

a. & single logical variakle.

E. 1wo or more logical variakles connected by the logical opera-
tcrs & or |.

c. Twc arithmetic expressions of the same type, connected by a
relational orerator.

A lcgical expression that contains a relational operator has the

logic value "true"™ if the condition exrressed ky the operator is

ret when the expression is evaluated. Otherwise, the expression

has the value "false."

The lcgical operator must ke followed by a logical expression or

term. Similarly, the operators & and | must ke preceded and fol-
lowed by logical expressions to form compound exrressions.

Any logical expression may ke enclosed in parentheses. Any com-

pound logical expression to whkich the - operator is to apply must
be enclosed in parentheses.

Logical expressions that do not contain terms in parentheses are
evaluated in the following order:

a. Multiplication and division (*# and /)
b. Addition and suktraction (+ and -)
c. Relational operators (>, <, =, >=, <=, ==, =K, D)
d. Lcgical NOT (=~)
e. Lcgical AND (§)
£f. Lcgical OR ()
when there is more than one operation of the same level, the opera-
tions are performed from left to right. For example, the
expression:
FGM.X/PGM.¥<1.E-5EPGM.Z=4 *

is evaluated as:

PGM.X/PGM.Y (dencte result Lky A)

A<1.E-5 (dencte result by P)
PGM.Z=U (denote result by C)
E&C

This example is evaluated as being “"true®™ cnly if the data at PGM.X
divided ky the data at PGM.Y was less than 10-5, and the data at
PGM.Z is the integer 4. The variakles at PGM.X and FGM.Y must be

Section 3: Program Management 55

floating-point data, and the variakle at PGM.Z must be integer data
to have the logical expression evaluated.

Terms in parentheses within lcgical expressions are evaluated in
the same order. Then, when the expressions have been reduced (that
is, a single logical value has been assigned to each term in paren-
theses), evaluation is performed in the crder indicated. For exam-
ple, the logical expression:

(PGM.B=2EPGM.C=3) | PGM.A=1
is evaluated as:

P&i.B=2 (denote result ky W)
PGM.C=3 (denote result by X)

WEX (denote result by Y)
PGM.A=1 (denote result by 2)
Y|z

In this example, the variable referenced rust ke integer data. The
expressicn is "true®™ when the data at PGM.B=2, and the data at PGM.
C=3, cr when the data at PGM.A=1.

Logical negation, indicated by the operator -, can be used
preceding:

a. The relational operators =, >, and <.

b. A single logical variakle, in which case the variable need not
ke enclosed in parentheses.

c. & compound logical expression, in which case the expressicn
rust ke enclosed in parentheses.

Assuring that Lkoth implicitly qualified symbols 2 and B are logical
variables, and both C and L are arithmetic expressions, then the
fcllowing are valid uses of the -~ operator:

—Ah
~C=D&-A
~A| R
-{(A|B)

The last two expressions are not equivalent. 1In the first case,
the -~ cperator applies to the logical variable A; in the other
case, the - operator applies to the evaluated result A|B. Tlus, if
2 is false, and B is true, then -A|B is true, and -~(a|B) is false.

INSTRUCTION LOCATION: A statement within the user's source progran is
an instruction location. An instruction location is expressed either as
the staterment number of an executable FCRTRAN statement cr as an inter-
nal syrbol in a source program that is written in assembler language.

In either case, the user can apply an offset to the primary location de-
signator. An explicit lemngth is ignored. When an internal symbol is
used, it does not have to reference a location defined in the ISD as an
instructicn or as a CSECT name.

The user can express instruction locations as internal symbols within
his program only if he requested an ISD when his prcgram was last com-
piled cr assembled. <Ctherwise, he must express them as external symbols
(with or without offset) or as hexadecimal locations. In either case,
the instructions must ke cn halfword boundaries.

The ISD sugplies the system with information concerning internal symr-
bols. However, an ISC that is produced may nct cc.tain all of the in-

36

formation about the source program. For example, in assembler language
usage, overlays caused by the ORG statement are not reflected in the
IsD. If the user displays (via DISPLAY command) the storage locations
affected by ORG statements, the contents will be correct, but the as-
signed symbolic names will be misleading.

LINK-EDITED MODULE NAME: This name must precede the criginal program
name, when qualifying internal symkols in a progranr that has been pro-
cessed by the linkage editor.

OBJECT MODULE NAME: This name is always the one assigned when the
source module was compiled or assembled. When internal symkols are
referenced, the object module name must qualify the symbol. This name
must be further qualified if the original program module was processed
by the linkage editor.

STATEMENT NUMBER: This numker is assigned by the system to each state-
ment containing an AT command. This number may be referenced in a
REMOVE corrand.

SYNONYMS

Synonyms fcr PCS command names and operands may be used. Examples of
valid synonyms are:

XYZ=LEPGM.PGM.IOSR

ASC=XYZ.(X"4C"') (where XY¥Z is a synonym)
X=A+B*C

ABY=L'EF246"

ABX=ARRAY(I,J)

shenever the system is processing an operand (such as a data location or
a data field), and a synonym is recognized, the syncnym is substituted.
The operand derived by the sukstitution may also contain synonyms, which
are substituted one at a time. ‘This procedure continues until all
synonyns are resolved.

Synonyr substitution occurs only for the first character string encoun-

tered when processing such operands as data lccation and data field.

For example, for a data location defined by LEPGM.PGM.IOSR, synonyms are
substituted for LEP@, kut are not substituted for PGNM or ICSR. (Refer

to Section 6 and to the description of the SYNCNYM command in Part III.)

Examrples:

1. 2Assurwe the user has link-edited programs PGMA, PGMB, and EGMC that
form a new program, LEPGM. Ncw, the user wants to reference con-
currently internal syrbols within PGMA, PGMB, and FGMC with ECS
commands. Since only one qualification is allowed at one tire, the
user is required to qualify fully all syrbcls in twe of the three
prcgrar modules involved.

Suppose he enters:

synonym a=lepgm.pgmb

synonym b=lepgm.pgmc

qualify lepgm.pgma
Now explicit qualification is simplified; the user can reference
symbols in PGMC merely by using B. as the qualifier. Thus, the
symbol X in PGMC can be referenced as:

set b.x=x'00000000"

Secticn 3: Program Management 57

This is much simpler than
set lepgm.pgmc.x=x'00000000"
which would be required otherwise. Now, an expression such as
set lepgm.pgma.z=lepgm.pgmk.y+lepgm.pgmec. x
can ce stated as
set z=a.y+b.x
The user has entered a CUALIFY command so that explicit qualifica-
tion cf external symktols is unnecessary. He then enters the
definiticns:
synonym array=table.
syncnym i=x'4c’
synonym j=i4
Then the expression
display array(i,3j)

which would normally show an element of the array, is interpreted
as

disrlay table.(x'lc',4)
which, instead, displays an element of the table.
Note: Substitution is made for ARRAY, I, and J, since each is a
data location. If ARRAY had keen explicitly qualified (PGM. ARRAY),

then TABLE. would not have been sutstituted, since ARRAY is the
second character string in the data location PGM.ARRAY.

Exanples Using PCS Cormands

The internal symbols in all the following examples are implicitly quali-
fied, since a QUALIFY command was entered with the name of the defining
program.

1.

58

The user wants to display the contents of all general registers and
floating-point registers in doubleword format when his progran
reaches the instructicn location ERREXT. Fe alsc wants the con-
tents of the virtual storage locations, in the range from TOP tc
BOT, to be put into his PCSOUT data set when PCS reaches the ERREXT
locaticn

at errext;display 0:15r,0:6D;dump top:bot
The user wants to change the value of variable PCINT to the address
of the external symkol DATA wken his program arrives at instruction
location TAGA: .

at taga;set point=a'data’
The user wants to display a takle, TAB, every tenth time through
the lcop ENTAB. When the loop is executed 100 times, he wants to
durp the CSECT named BLDTAB:

at entab;if %=(%/10)%10;display tab;if %=(%/100)#100;dump kldtak

The user wants to use PCS commands to produce input and output to
his program. He wants to make some computations, using the sequen-

tial numbers 50 to 500. At statement number 10 he sets up a con-
stant, INPUT, using the variakle A, which was grevicusly initia-
lized at 0. At the end of each computation, which is statement
number 80, he wants to see the result, OUTIPUT:

at 10;set input=a+50;set a=a+l;if input=500;stop
at 80;display output;branch 10

The user has assembled his prcgram and has discovered that he has
forgotten to provide a lakel (TAGA) for the instruction

L 2,XYZ
which is located at hexadecimal location 124 and referenced Ly
B TAGA

which is at hexadecimal location 176. By using PCS comwands, he
can fix his program temporarily, withcut reassernkling, by issuing

at csect.(x'176") ;kranch csect. (x*124"')

The user wants to display the contents of all general registers
when the variakle VAR1 in his PSECT changes.

TRAP STORE,VAR1;DISPLAY 0:15R

Section 3: Program Management 59

SECTION 4: CCMMAND CREATICN

The user can alter the names of system-supplied commands, redefine
system-supplied commands, and create new commands from a series of
systern-surrlied commands, or user assemkler okject coding. In creating
a new corrrand, the user can alsc define his own operands and establish
the desired defaults for these operands.

Two systemr-supplied cormands, PRCCLEF and BUILTIN, are used to create
new commands .

e PROCDEF defines a comrand procedure, consisting of a combination of
other ccmrands that the user can invoke as a command.

e BUILTIN defines an ckject program that the user can invoke as a
command.

The following are some advantages to user-written commands:

1. Although it is possikle to store a series of commands (for exargle,
a nonconversational SYSIN data set) and then execute them via the
EXECUTE command, this process has limitations in its flexibility.
PROCDEF is easier to use; it does not require the user to exrlicit-
ly create a data set when the commands are tc ke stored, and it
allows easier modification of the commands.

A user may have a series of commands that he issues many times dur-
ing a task or several tasks. He can collect these commands in
sequence as a procedure, assign a name to this procedure via
PRCCIEF, and invoke this procedure ty issuing the name. Since scre
of the commands in the procedure may reguire operands, provision is
made by the system to associate the crerands with the name of the
comrand rrocedure. BAfter the procedure has been defined and named,
it may be executed ky entering its name and the necessary operands
during a task, just as any system-supprlied cornmand is entered.
Lefining a comrand procedure is analogous to writing a computer
program; that is, a set of commands is established at one time and
is executed at a later time by issuing its namre.

2. The user may require an entirely new command that invokes actions
unlike thocse provided ky any current system-supplied commands. He
creates an object program and, ky using the BUILTIN command,
defines his object code as a user-written command. This procedure
is called by its name in the same way a system-sugrrlied command
calls a procedure. It differs from a normal object module call,
however, in that operands may ke supplied according to cormand-
operand rules rather than program-call rules.

COMMAND PRCCEDURE

A command procedure is a prestored sequence of conmand statements that
uses parameters and other input material necessary for the execution of
the statements. The user calls the procedure by issuing the procedure
name as a ccmnand. For example, if he has defined a cormand procedure
py using PROCLCEF and has specified ABC as the procedure name, he may
call his procedure by issuving ABC. The prccedure call is a two-stage
process. In the first stage, operand substituticn is rade where speci-
fied. 1In the second, lines of the procedure, which are commands, are
scanned and executed in the same manner as a system-supplied command
that is entered at the terwminal.

60

PROCEDURE LIBRARY

Command procedures are stored in procedure libraries: user-written pro-
cedures are in the user's procedure library (member SYSPRO of USERLIB);
system-def ined procedures are in the system procedure likrary (mermker
SYSPRO of SYSLIB). When the user issues a command, the system first
searches the user's procedure likrary. If the procedure is not there,
the system checks its likrary. This order of library search enables the
user to name a procedure he has created with a system-supplied conmrand
name, thereby preempting execution of the systern prccedure.

COMMAND PROCCEDURE DEFINITION -- PROCDEF

The PROCDEF command defines a cormand procedure that consists of other
comrands. In issuing PROCLCEF, the user must specify, as an operand, the
name to be assigned to the new user-written command procedure. This
procedure name is the command that invokes the procedure. (See the de-
scription of the command in Part I1I1.)

When the user enters the PRCCLEF command, the text editor is invoked.
The user can use all of the text-editing commands during command crea-
tion (see "Editing Procedures™ later in this section and "Text Editing”
in Secticn 2 of this part). Unless the user suppresses line number pro-
mpting (by issuing the ccwmand DEFAULT LINENO=N), the syster prompts him
to enter data by issuing line numbers. Fcr a new procedure, the system
issues line number 100; for an existing procedure, the system issuves an
underscore as a prompt for a command. In both cases CLP is set tc the
first line after line O.

For example, if COPYCAT is the name of the command procedure being de-
fined, the user enters

grocdef cogpycat

and the system replies.

0000100 |
If COPYCAT were previously defined, and the last line is line 800, the
systen's reply is an underscore and CLP is set to the first line of the
PROCDEF.

SPECIFYING DUMMY OPERANDS

The user can build a command procedure that accepts crperands when called
by its command name; to do this, he must establish duwmy operands in the
PROCDEF to "hold the places®™ for the real operand values. Dummy
operands are placed in the PROCDEF where the real values would be ex-
pected; then, when the command is entered, the real cperand values are
substituted for the dummy values. The dummy operands are specified in a
PARAM line. This line must only occur at the first line after line 0 of
a PROCDEF; the format is:

User: procdef inlaw
Sys,User: 0000100 param troukle

Then, when the PROCDEF is called, the system accepts cne orerand (for
examrple, INLAW JONES) and sukstitutes the operand for each occurrence of
the durmy cperand in the PROCDEF.

User: procdef inlaw
Sys,User: 0000100 param trouble

Section 4: Command Creation 61

0000200 disglay 'trouble®
0000300 _end

In this example, the PROCDEF could be called like this:
inlaw jones

The system substitutes the operand JCNES for each occurrence of the
dummy operand TROUBLE. The PROCDEF displays the word JCNES.

A dummy operand name may be specified in either of two ways.

1. B character string, which defines a positional operand, is (a) the
keyword name of the dummy operand used for association with the
calling parameter (the value specified in the crerand field of the
corrand calling the procedure) and is (b) the internal string for
which there will be a substituticn in the prccedure text. The ac-
tual character string specified as the calling parameter replaces
all occurrences of the dumny cperand in the prccedure text. For
exanmple:

param dsname

when the procedure is called, the value of the first positional
operand or the operand value of the keyword DSNAME in the calling
command replaces the occurrences of LSNAME in the procedure text.

2. An external character string is the keyword name of the durmy
operand used for association with the calling parameter (the value
specified in the operand field of the comrand calling the proce-
dure). The internal string (to the right of the equal sign) is
replaced ky a substitute in the procedure text when the procedure
is called. For example:

param dsname=$51

DCSNsME is the external string, and $1 is the internal string. When
the procedure is called, the value of the first positional ogerand
or the operand value of the keyword DSNAME in the command calling
the procedure replaces $1 in the prccedure text. Operand resolu-
tion is discussed in detail under "Operand Resolution and Substitu-
tion" later in this section.

Exarple:
Prccedure

User: procdef callme
s,User: 0000100 param entry=$a
' 0000200 display 'calling $a’
0000300 call $%a
Procedure call can be in one of the following forms:

callwre entry=one
callme one

The result is:
CALLING ONE
Module CNE is called.
ENTRY in the PARAM line is an external string and is associated

with the keyword ENTRY in the procedure call. The value ONE is
substituted for the dummy operand $A in each occurrence.

62

Procedure

User: procdef callme

Sys,User: 0000100 param $a
0000200 display 'calling $%a’
0000300 call $a

Procedure call can ke in one of the following forms:

callme one
callre $a=one

The result is:
CALLING ONE
Module ONE is called.

$A in the PARAM line is both tke external string, used for associa-
tion with the calling operands, and the internal string, tc ke sub-
stituted for in the prccedure.

The user may specify a dummy operandnas either a normal string or a
quoted string. (Refer to the definition of string constants in Section
2 under "General Terms.")

Note: Durny operand values are usually preceded by a $ or some other
identifier to ensure that only desirakle sukstitution occurs. (See
"Cperand Substitution,® later in this section.)

ENTERING PROCEDURE TEXT

after the user issues the PROCDEF command name and operands, and option-
ally the PARAM line, all subsequent lines issued without a preceding
break character are included in the procedure text. The system prompts
for each line with a line numker, and there is no limit to the number of
lines the user can enter.

When a break character appears first in a line, the statement that fol-
lows is interpreted as a command. (See the list of definitions under
"General Terms™ in Section 2.) However, when the first and second
characters of the line are treak characters, the usual break-character
action does not occur. Instead, the system replaces the pair of break
characters with a single break character and processes the line as if it
were text. Thus, lines starting with break characters can ke put into
procedures.

The user can enter system-supplied commands (including PROCLCEF and BUIL-
TIN) or user-written commands as text. The ccrrmands entered need not
include all the operands associated with them, but cnly those necessary
for the successful performance of the functions requested. These
operands can remain variakle, if the user specifies dummy names that
also appear in the PARAM line, or can be fixed with explicit wvalues.
Fixed operand values are not included in the PARAM line and are acted
upon as specified in the text when the procedure is called.

A direct call to an okject module can be entered by using the name of
the module in the procedure text.

TERMINATING PROCEDURE DEFINITICN
The user terminates processing of a PROCDEF command by entering a break

character followed by either an ENL cormand, ancther PRCCLCEF command, a

Secticn 4: cComrand Creation 63

PLI command, or an EDIT comrmand. when the user enters another FRCCDEF
corrand, the same options for terminating its processing are aprlicakle;
the last PROCLEF must te terminated with either an END, EDIT, or FII
command. :

Exanples:

1.

64

User procdef copycat
Sys,User: 0000100 param ddname=alphname ,dsname=namel, -
0000200 $any,newnare=$1
0000300 ddef ddname=alphname,dsorg=vi,dsname=namel, -
0000400 volume=$%any
0000500 catalog dsname=narel,u, newname=$1
0000600 _end

In line 100, DDNAME, DSNAME, and NEWNAME are external strings (key-
words) that associate the calling parameters with the internal
strings in the line: AILFHNANME, NAME1, and $1, resgectively. These
internal strings are replaced in the procedure text by the calling
parameter values. $ANY, represented pcsitionally in line 100, is
replaced by a substitute in the text.

CDEF, cn line 200, is a system-supplied command that has the vari-
able operands DDNAME, DSORG, DSNAME, and VCLUME. DSCRG=VI is a
fixed operand value and is acted upon as specified. Values for the
other variable operands are supplied when the procedure is called.

CATALOG, on line 300, is also a system-supplied command. Twc of
its operands are variakle and are replaced by substitutes when the
procedure is called. When the break charactexr, follcwed Ly the END
cormand, is entered, the definition of this procedure is
terminated.

)] {=]
1]
°18
(=YY
0
1]
[

procdef dmprog

0000100 param $1, ‘here:there’

0000200 if *$1'='yes'; display 'success’
0000300 if "$17'-="yes'; dunp here:there
0000400 _edit xyz

The quoted string 'HERE:THERE' is given as a dunrmy orerand in the

PRARAM line. The apostrophes permit the use of the special charac-
ter (the colon) within the character string. The apostrophes are

reroved when the string associated with this dummy operand is sub-
stituted in the procedure text.

In lines 200 and 300, IF is a system-supplied command; the arcs-
trophes enclosing its operands are not removed when the substitu-
tion is effected. The break character and ELIT ccrrmand on line 400
terminate the PROCLEF.

User: procdef diff

Sys,User: 0000100 param alphname, $1, namel
0000200 ddef ddname=alphname,dsorg=$1,dsname=namel
0000300 _procdef callme
0000100 param alphname,$a, $1, $2, *$3', 4
0000200 asm name=alphname, macrolib=$%a,y,v,¥.Y
0000300 copycat algphname, $1,%2,53,54
0000400 _end

:

The break character preceding the seccnd PROCLEF ccmmand termrinates
the execution of PROCLEF DIFF. The PROCDEF named CALLME is termi-
nated with _END. Within CALLME (line 300), the user-written con-
nmand COPYCAT is used, since it was defined by & PRCCDEF.

Nested PROCDEFs

The text of a procedure, defined by PROCDEF, may contain octher PROCDEF
commands. This structure is called a nested PROCCDEF.

SYSINX: The value of SYSINX deternines the scurce cf input for a
PROCDEF command. A nested PRCCLCEF should get its input from the preced-
ing PROCDEF. (See Example 1.) Before entering the nested PROCLCEF,
issue the following command:

default sysinx=e

The user must remember to return the value of SYSINX to G following com-
pletion of the nested PROCCEF. (For further information on SYSINX, see
the discussions under "Source Input” in Secticn 2 and "Implicit
Operands™ in Section é. The syster default is given in Appendix C.)

Examples:

1.

User: procdef abc :

Sys,User: 0000100 param 3l1,alphname,dsname=namel,newname=$5n
0000200 ddef alphname,vi,namel
0000300 catalog dsname=namel,newname=$n
0000400 default sysinx=e
0000500 procdef al
0000600 param a2,name2,dsname=name3
0000700 ddef name2,vs,dsname=name3
0000800 set r=5
0000900 qualify a2
0001000 22
0001100 __end
0001200 default sysinx=g
0001300 _end

Lines 100 through 1200 are treated as text of AEC. This procedure

is terminated by _END, in line 1300. 1The two break characters that
precede END in line 1100 are replaced by a single break character,

the normal break-character action does nct occur.

When ABC is entered, the values of the calling parameters are
resclved and substituted for the occurrences of the dummy operands
throughcout the procedure. BABC is executed so that LLEF, CATAICG,
and DEFAULT are executed. When the PROCDEF on line 500 is encoun-
tered, definition of a new procedure is initiated. If the ccmmand
ABC had been issued as

abc one,myprog,dsname=mylik,mylib02
line 500 would keccme
PROCDEF ONE

Input for this PRCCDEF comes from within 2EC since SYSINX=F (line
400). Lines 600 through 1000 of ABC become lines 100 through 500
of ONE and the END on line 600 terminates procedure definiticn.

PROCLEF ONE
0000100 PARAM 22 ,NAME2,CSNANE=NAME3
0000200 DDEF NAME2,VS,DSNAME=NAME3
0000300 SET R=5

0000400 QUALIFY a2

0000500 a2

0000600 _END

Section 4: Command Creation 65

2.

66

The next time the user issues ABC, with the first operand specified
as anything but ONE, another new procedure is defined. If OXKE is
specified again as the first operand of ABC, no new lines are added
to PROCCEF ONE. In ordex to add lines to a procedure created on
line 500 of ABC, there must be an INSERT LAST conrand in ABC.

Notice that when ABC is executed, the value of SYSINX is returned
to G (line 1200).

User: procdef def

Sys,User: 0000100 param $1,$2,alphnare,dsnarne=4$3
0000200 Adef alphname,vi,dsname=53
0000300 default sysinx=e
0000400 procdef s$1
00005060 paxram dsname=$3,54,42
0000600 catalog dsname=$3,state=u,newnare=3$4
0000700 default sysinx=e
0000800 procdef $2
0000900 param aa,ak,ac
0001000 if ‘aa‘='yes’'; display ab
0001100 if °*ab*='yes'; display ac
0001200 __ end
0001300 _ _end
0001400 default sysinx=g
0001500 _end

In prccedure DEF, there are two nested PROCLEFs. 'The PROCLEF on
line 800 is nested within the PROCDEF on line 400, which is nested
within CEF. The first time DEF is executed, a procedure is defined
(via PROCLEF on line 400); when this procedure is executed, another
procedure results.

Lines 100 through 1400 are text of DEF. The first two break chara-
cters preceding ENC on 1200 and the two break characters preceding
END on 1300 are replaced by single break characters. Assume DEF is
called:

def two,three,mypro,dsnare=myjob

Resoluticn and substitution of calling parameters occurs; LDEF and
CEFAULT are executed, and then PROCDEF on line 400 is executed.
This procedure definition results:

PROCDEF TWO
0000100 PARAM DSNAME=MYJOE,$4,THREE

0000500 CATALCG DSKAME=MYJCR,STATE=U, NEWNAME=$4
0000300 DEFAULT SYSINX=E

00004 00 PROCDEF THREE

0000500 PARAM aA, aB, al

0000600 IF "@aA*="YES'; DISPLAY aB

0000700 IF "aB'='YES'; LCISELAY aC

0000800 __ END

0000900 _END

Now, assume this procedure call occurs:
two dsname=mine,ok,three

Calling parameters are resolved and substituted, CATALOG and
CEFAULT are executed, and another procedure is defined:

PRCCDEF THREE
0000100 PARAM 3A,aB,aC
0000200 IF °aA'="YES'; CISELAY aB

0000300 IF 'aB'='YES'; CISFLAY aC
0000400 _ENL

Following these procedure calls, the user has three procedures:
DEF, TWO, and THREE.

3. User: procdef jok
Sys,User: 0000100 param a>1,82,alphname=namel,$3

0000200 ddef namel,vi,$3
0000300 default sysinx=e
0000400 procdef a>1
0000500 param $3,newname=354
0000600 catalog $3,state=u,newname=$4
0000700 __ procdef a2
0000800 param al,b2,c3
0000900 if ‘*ai1'='k2';display c3
0001000 __end
0001100 default sysinx=g
0001200 _end

Within JOE, there are two nested PROCLEFs, but this time they are
both nested within JOB, not one within the other, as in Example 2.
When JOB is called, two procedures are defined and stored in the
procedure library. Assume this procedure call:

job cat,cond,alphname=ddx,datas

Following resoluticn and sukstitution of the calling parameters,
LCEF and CEFAULT are executed, and the PRCCDEF on line 400 is
encountered. This prccedure is then defined:

PRCCDEF CAT
0000100 PARAM DATAS,NEWNAME=$4
0000200 CATALOG DATAS,STATE=U,$U

Prccedure definiticn is terminated by the PROCDEF (preceded by a
break character) on line 700 of JOE.. A new prccedure is then
defined:

PROCDEF COND
0000100 PARAM Al,E2,C3

0000200 IF "A1'='B2'; DISPIAY C3
0000300 _END

NESTED PRCCEDURES

Nested procedures are user-written commands that call procedures (de-
fined by either PROCDEF or BUILTIN) within the text of a procedure. A
nested procedure may include another user-written comrand that calls a
procedure. In each case, when a new procedure is called, it is process-
ed before returning to the procedure from which the call was made. For
example:

User: procdef tab
Sys,User: 0000100 param ddname=argl,dsrg,dsnl, new,ac
0000200 ddef arqgl,dsrg,dsnl
0000300 mycat $news$
0000400 mycall ac
0000500 _end

When TAB is called, DDEF is executed and MYCAT is reccgnized as a user-
written command. MYCAT invokes its procedure, and if that procedure
calls another procedure, that call is processed. When execution cf
MYCAT is completed, MYCALL, also a user-written command, is executed.

Section 4: Command Creation 67

SHARING USER-WRITTEN COMMANDS

User-written commands can be shared when the cwner makes his user 1li-
brary available to other users via the PERMIT command. The prospective
sharer issues the SHARRE command, with these operands: the name by which
he will refer to the owner's user library, the owner's user identifica-
tion, and the name of the data set to be shared (that is, USERLIB). For
example:

share lib,user345,userlib

is the corrand issued where LIB is the name by which the sharer will
refer to the owner's user library. Then the sharer issues a PRCCLEF
comrand, with the name of the command he wants to share as the operand.
When the system prompts with line 100, the user enters a break character
followed by the EXCERPT command. He specifies as operands on the
EXCERPT command the name ky which he refers tc the owner's user likrary
{in the abcve example, LIB), the member name SYSPRO, and the name of the
owner's procedure. The entire text of the procedure is inserted intc
the sharer's user library.

For example, a user wants to share a command, procname, from a user li-
brary to which he has been granted access. After issuing the SHARE comr-
mand, as akove, this PROCDEF is entered:

User: procdef akc
Sys,User: 0000100_excerpt 1lib(syspro) ,rname=procname,100,last
end

ABC is defined as a command in the sharer's user library and may be
called by him.

EDITING PRCCEDURES

The PROCLCEF command invokes the text editor. This enables the user to
issue any of the text-editing ccocmmands while he is defining a procedure
or atter he has defined it. The user enters a break character, fcllowed
by the text-editing command. He should not enter the EDIT command.

The CORRECT command can be used within a line to respecify characters
that the user wants to insert, replace, or delete. Cther commands, such
as INSERT, EXCISE, and REVISE, can be used to insert, delete, or rerlace
complete lines in the procedure text. (See Part III for the descrip-
tions of these commands.)

This example shows how the text-editing commands can be used in the
definition of a procedure:

Usex: procdef copyit
Sys,User: 0000100 param alphname,dsorg,namel,name3
0000200 ddef alphname,dsorg,name?2
0000300 ddef alphname,dsorg,namel
0000400 cds namel,name?
0000500 _carrect 100
System: PARAM ALPHNANE ,DSCRG,NAMEl ,NAME3
User: * $2
Sys,Usexr: excise 300
insert 500
0000500 default sysinx=e
0000600 edit name?2
0000700 _end

While defining CDPYIT;'the user enters text on line~ 100, 200, 300, and
400. When the system prompts with line 500, he decides to make a

68

correction in line 100. He enters a kreak character followed ky the
CORRECT cormand and the numker of the line (1€0) he wants to modify.
The system responds with the line text, and the user enters the ccrrec-
tion. The asterisk in the first column duplicates that column and all
following columns until another correction character ($) is encountered.
The user wants to change NAME3 in the PARAM statement to NAME2, so he
places a $2 under the last two characters in the line. This duplicates
the cclurn abcve the $ and replaces the 3 with a 2.

The system then prompts with an underscore (rather than a line nunber),
indicating that another command statement must ke given if processing is
to continue. The user wants to delete line 300 from the Frocedure text.
d€ enters the EXCISE command and line number 300. The system again pro-
mpts with an underscore, indicating the completion of the command's
execution and requesting the next statement.

To continue entering text, the user enters an INSERT ccomand, followed
by the numker of the next line to ke entered as text, which, in this ex-
ample, was line 500. (Be could have entered INSERT LAST since he is
adding to the end of the procedure.) The Syster promrts with line num-
ber 500, and the user enters two additional statements in lines 500 and
600. The procedure definition is terminated with the END command.

Another use of the INSERT command in a procedure definition follows:

User: procdef pdef
Sys,User: 0000100 param alphnane,vi,namel,nare2,namel
0000200 ddef dsname=alphname,vi,ddname=namel
0000300 _ddef dsname=myprog,vs,ddname=test
_insert
0000300 ddef dsnare=name2,vi,narel
0000400 _end

The user, after entering line 200, decides to issue a ccrmand statement
to the command system. When the system prompts with line 300, the user
enters a break character followed ty a DDEF command, which does not be-
come a part of the procedure. When the DDEF is completed, the systen
prompts with an underscore character, requesting the next command state-
ment. The user enters an INSERT command with nc line numter specifieqd,
and the system prompts with the line number specified by CLP (in this
case, line 300). This use of the INSERIT cormand is pcssible kecause the
CLP was not changed by the issuance of a text-editing command for a gre-
vious line number. The user continues to add tc the rreoccedure text ke-
fore terminating PROCDEF processing with the END command.

when a procedure has keen previously defined, the user may enter the
PROCDEF command followed by the name of the procedure he wants to modi-
fy. The text editor is invoked, and the systenr pronpts for the next
comrand by issuing a break character.

For example, the user again wants to modify the procedure COPYIT, which
he has previously defined. He enters:

procdef copyit

and the system prompts with the kreak character. The user may now enter
a text-editing command or he may add to the procedure text by entering
the INSERT LAST command.

To delete a procedure that has keen defined, and toc have the correspond-
ing procedure name removed from the dictionary as a USERLIB entry, the
user must enter the PROCDEF commwand, followed Ey the name of the proce-
dure. He then enters a break character, fcllcwed by the EXCISE conrand,
specifying the range of lines of the procedure as orerands on the cor-
mand. For example, tc delete the previously defined prccedure COPYIT:

Secticn 4: Ccnrand Creation 69

User: procdef copyit
Sys,User: 0000100 _excise 0,last
end

EXCISE deletes the entire procedure fror line 0 tc the last line. BUIL-
TIN, EDIT, ENC, PLI, oxr PROCDEF must be to complete the deletion of the
procedure. Until one of these commands is issued, the reference to the
procedure is not removed.

Note: Line 0 must be specified, since it is the line numker assigned Ly
the PROCDEF command to the procedure header.

DIAGNOSTIC MESSAGES DURING FXECUTICN

Diagnostic messages that occur during the execution of a command groce-
dure are output to SYSCUT, which may be a data set cr terminal. When
the diagncstic message requests the user to repair an error condition,
the user can make the correcticn at his terminal, and the procedure con-
tinues executing. If the error is nonrecoverable, the diagnostic mes-
sage is cutput to the SYSOUT data set. In nonconversational mode, the
task is terminated, and diagnostic messages are sent to the SYSCUT data
set. In conversational mode, the user is queried for a new command.

OBJECT PRCGRAM DEFINITICN -- BUIILTIN

This command defines an object program that the user can invoke as a
command. It is useful for accomplishing actions not achieved by any
systen-suprlied commands or comktination of them. The user creates an
okject prcgrar and defines it as a command ky use of BUILTIN. ({See the
description of this cormand in Part III.)

As with a PROCDEF, the user can define operands and sugpply operand
values when his user-written command is issued. 1If the user wants tc
define cperands for his command, he must supply the coding within his
module to handle the parameter values supplied when the module is
called. The BPKD macro instruction must be suprlied in the object code
and must include the definitions of the expected parameters. The racro
instruction must also supply the names needed to provide linkage between
the module and the BUILTIN command that defines that mcdule. Refer to
Assembler User Macro Instructions for a further description of these
macros.

OPERAND RESOLUTION AND SUESTITUTION

The user can specify operands for user-written commands that are created
with either the PROCDEF or BUILITIN cormands. With PROCLEF, the user is
primarily establishing the operand values that are required as paranme-
ters by the commands. He specifies these parameters Ly entering, on the
line following the PROCLEF command, the word PARAM followed by the dummy
names he wants to have for the operands.

When the user wants to define parameters for a BUILTIN procedure, he
must supply the coding within his module to handle the parameter values
supplied as operands. Be must alsoc provide a BPRKD/BPKDS macro instruc-
tion within the module to generate the linkage to the object program de-
fined by BUILTIN. Pointers are then generated to specify the address
within the rodule where the operand names are stored. When the user
issues the command, any operand value given with the command is passed
to the module by pointers in the locations provided Ly the BPRD/BFXDS
macro instruction.

70

With user-written commands created with BUILTIN and PRCCDEF, the parame-
ters supplied as operands are resolved at the time the user-written com-
mands are issued. Since system-supplied ccnmands were created with ei-
ther PROCDEF or BUILTIN, the description of the operand resolution and
substitution process for user-defined commands pertains to system-
supplied commands as well.

For comrands created with ERCCLEF, there is a procedure-expander routine
that resolves operands and substitutes operands. Operand resoluticn
consists of:

1. Analyses of calling operands

2. Analyses of procedure operands

3. Generaticn of operand equivalences

ANALYSIS OF CALLING AND FRCCEDURE CPERANDS

When the user calls a procedure, he enters the procedure name and the
operand values he wants assigned tco the dummy operands of the procedure.
As with system-supplied commands, operands may be represented either
positionally or by means cf a keyword.

Positional and Keyword Notation

Following is a review of pcsitional and keyword notation, which was in-
troduced under "Operand Representation” in Part I.

Positional calling operands must ke supplied ky the user in the same
order as that given in the procedure parameter list (PARAM line) or the
BPKL parameter list. When a positional operand is omitted, and another
positional operand is written following the omitted operand, the corra
that would have followed the omitted operand must ke retained to indi-
cate the relative position of the operand that is included.

Assume this command procedure defines a VISAM data set.

User: procdef viddef

Sys,User: 0000100 param ddname,dsname
0000200 ddef ddname,vi,dsname
0000300 _end

This procedure call might be used:
User: viddef mybest,testl

VIDDEF is the command that calls the procedure. The first positional
operand in the calling sequence is MYBEST, which is the value assured by
the first positional dummy operand (DDNAME) in the PARAM list. TEST1 is
the value assumed by DSNAME tecause TEST1 is in the same position as
DSNAME. The result of the akove procedure call is:

DDEF MYBEST,VI,TESTL
For the same procedure, assume that the user wants to specify operands
that are to be inserted into the DDEF command, but he wants to change
the data set organization tc VSAM. He enters:

User: viddef mybest,vs,testl
This procedure call is erroneous. By positional association of the

calling operands and the PROCDEF PARAM line, these associations are
made:

Secticn 4: Command Creation 71

DDNAME=MYBEST
CSNAME=VS

The result of the above procedure call is:
DDEF MYBEST,VI,VS

MYBEST is the LCDNAME; VI is still the data set organization, and VS is
DSNAME. There could be a data set that is narmed VS, kut the user in-
tended TEST1 as the DSNAME.

Keywords of calling operands may appear in any crder; of course, each
keyword has an associated positional notation. Keywords have the gener-
al forr KEYWORD=value, where KEYWORD is the name of the operand and is
shown in all-capital letters, followed ky an equal sign, and value is
the actual value of the operand.

Assume the following procedure defines a data set that dumps one or more
data lccaticns or expressions:

User: procdef autodump

Sys,User: 0000100 param dsname=alphname,data='here:there"’
0000200 ddef ddname=pcsout,dsorg=vi,dsname=alphname
0000300 dump here:there
0000400 _end

The fcllowing procedure call can ke used:
User: autodump data='0:15r,0:6d,top:middle’,dsnane=nygrg

This call has a comkination of keyword and positional notation, and the
keyword notation does not coincide with the ccrrespcnding positional
notaticn in the PARAM line of the procedure. The result of the akove
procedure call is:

DDEF DDNAME=PCSOUT,DSCRG=VI,DSNAME=MYPRG
DUMP 0:15R,0:6D,TCF: NIDELE

This example also shows how a gquoted string can be used to define sever-
al operands in one operand field. Althcugh an cperand in the CUME com-
mand is not shown in keyword notation, it can be designated as keywcrd
notation in the PARAM line and calling sequence. The operand 'HERE:-
THERE' in line 100 of AUTCDUMF must be identical tc the dummy operand
specified in the DUMP command. The apostrophes are needed in the key-
word expression only if special characters are used.

Defaults

The user can specify, alter, or delete default values fcr the operands
of a user-written command in the same way he does with a system-sugplied
command. Unless the user has provided default values fcr the operands,
these operands must ke specified wken the command is issued. The user
creates a default value by issuing the DEFAULT command (see Secticn 6
and the DEFAULT command in Fart III) and sgecifying the durmy operand
name in the operand field.

if the user invckes his command procedure and omits operands, the syster
either obtains the default value (if one exists) frcrx the user likrary
or substitutes a null string for thke missing value.

Fcr an ckject program defined with BUILTIN, the user can write a routine

to either generate a message or supply a fixed value when a mandatory
operand is cmitted.

72

Example: This command procedure has been created to define a data set:

User: procdef defcat

Sys,User: 0000100 param ddname=datname,dsname=alphname,dsorg=vp
0000200 ddef ddname=datname,dsorg=vp,dsname=alphname
0000300 _end

A dumnmy value of VP, which is not the default value of DSCRG (VI is the
default), is assigned tc keyword DSORG.

Assume this sequence of ccmmands in the procedure call:

User: default dsorg=vs
Sys,User: defcat testx,dsname=progl,ddname=testxy

The result, after resclution of the values, is:

CDEF CONAME=TESTXY,LCSCRG=VS,DSNAME=PROG1

The following is an explanation of the way the system resclved the
values that were entered:

1. DDNAME=TESTXY

Although the dummy operand CDNAME=DATNAME is in keyword notation,
it can also be considered positionally (that is, the first operand
in the PARAM line). The syster resolves TESTX as a possikle value
for DATNAME. However, CDNAME=TESTXY is specified in the calling
sequence, so the system takes it as the value of DATNAME.

2. DSORG=VS

The system~supplied default value for LSORG is VI. LSORG=VP is
given as an operand in the DDEF command and in the PARAM line. The
CEFRULT command sets CSORG=VS. As a result of the procedure cali,
no indication is given for the value to ke substituted for VE, ei-
ther in positional or in keyword notation. The system searctes for
a default value, and since the user has given a default value for
DSORG, this value (VS) is assigned as a string to be substituted
for VP in the PARAM line. Eventually, the system substitutes VS
for the dummy operand VP in the DDEF command.

3. DSNAME=PROG1
This cperand is given in the procedure call in keyword format.

PROG1 replaces ALPENAME.

Nulls: The user can specify a null value for the operands of the user-
written command. A null value is indicated by twc successive
apostrophes.

Assume operands A=x, B=y, C=z:

1. BBy omitting keywcrd operand A=x and specifying another operand in
its pocsition, a default value is assumed for A. If there is no
default value, a null value is assumed.

B=y, C=z
2. A mull value for A can be expressed as:

‘', B=y, C=z

Secticn 4: Ccnrand Creation 73

3. Keyword notation can be used tc indicate a null value for A.
a='"', B=y, C=z
Here is an example of the use of a null value:

User: procdef ccpy

Sys,User: (0000100 param dsnamel,dsname2,base,incr
0000200 if ‘kase*=*'’'; cds Jdsnamel,dsname2
0000300 if ‘base®*-~='"'; cds dsnamel,dsname2,base, incr
0000400 end

Calling Seguence 1:

copy orig,dupe,base=""

assume the user has specified a default value of 300 for EASE. The data
set names CRIG and DUPE are sukstituted in lines 200 and 300 of CCPY.
BASE is indicated with a null value, which is assigned to the dummy BASE
operand in the PARAM iine. The null value is substituted wherever the
character string BASE appears in the text cf COPY, as:

200 IF "*='';CDS CRIG,LUPE
300 IF '*~="";CDS ORIG,LUPE,'',100

After substitution, the quoted string 'BASE' kecomes a quoted string
Wwith no space between the apostrophes, since a null value is actually a
quoted string of zerc length. 7The system default value of 100 is
assuned for the operand INCR, in line 300, since INCR was defaulted in
the calling segquence.

For calling sequence 1, therefore, the conditicns are met in the condi-
tional statement in line 200; the associated CLS command is invoked.

Calling Sequence 2:

copy orig,dupe

Assume, again, that the user has specified a default value of 300 for

BASE. BASE and INCR are defaulted in the calling sequence. The user-
supplied default value cf 300 for BASE and the system-supplied default
value of 100 for INCR will be the values assigned tc the cperands BASE
and INCR in the PARAM line. The result of the substitution process is:

200 IF *300°'="";CDS CRIG,DUPE
300 IF *300°'-~="';CDS ORIG,DUPE, 300,100

The conditicns for the conditional statement in line 200 are not et
{that is, '300' does not equal **'), but the conditions for the condi-
tional statement in line 300 are met. The CDS command is executed.

GENERATION OF OPERAND ECUIVALENCES

The systemr establishes a takle for the dummy Operénds, their correspcnd-
ing keywords, and the calling sequence values.

The result that is generated is shown in Table 10. The first column,
Internal String, contains the character string that is the dummy cperand
in the PARAM line. This dummy operand identifies the string that is to
be replaced in the procedure text when substitution occurs. The second
column, Keyword, contains the keyword operand in the PARAM line. The
third colurn, Value, contains either the keyword or positional value
expressed in the calling sequence. When a call is made on a procedure,
the keyword column is searched for each calling parameter keyword. If

74

one is found, the value associated with the calling keyword is placed in
the VALUE cclumn; this value is sukstituted later fcr the associated
string in the Internal String column.

Table 10. Generation of orerand equivalences

Internal String Keyword Value

Value in
calling sequence

Keyword in
PARAM list

String for which
substitution occurs

P v o S e oy

T Sp——
h--o.._.-ap—-q
h-.-—-!b_J

dere is an example of how resolution of operands occurs, based on the
process shown in Table 10. Assume this precedure has keen defined:

Usex: procdef asmwlist

Sys,User: (000100 param alphname,stored=$n,lincr=(first,last),-
0000200 version,syml ist=$y
0600300 asm alphname,stored=$n,1incr=(first,last),-
g000400 verid=vexsion,isd=y,symlist=$y,asmlist=y,-
0000500 crlist=y,stedit=y,isdlist=y,pmdlist=y
0000600 _end

This procedure call is made:

asmwiist myprog,stored:y,version=today,now,alghname=nyprogl,symlist=n

The effect of operand resolution is shown in Table 11.

Table 11. 1Indication of operand rescluticn

f T T T e Tm— - T T b
| Position | 1] 2] 3 | 4 | 5 |
b —— + { + 4 {
| PARAM string QALPHNAME]STCRE&=$N{IINCR=(FIRSI,LAST)1VERSION|SYHLIST=$Y|
| 1 ! | ! |
{Calling [MYPROGL |STCRED=Y | | NOW | SYML IST=N |
|values | | ; [| [
o l j | | | |
lStrlng for SALPHNAME2$N | (FIRST,1AST) !VERSICN|$Y |
Iwhich substi-| | i | } |
|tution occursj] {] | |
L i A i — L | 4
For each string named, a value is ascertained.

Internal String Reyword Substitute Values

ALPBNAMF ALFHNAME MYPROG/MYPROCGI

$N STORED Y

(FIRST,IAST) LINCR null

VERSION VERSION TODAY/NOW

SY SYMLIST N

The last wvalue in each line is taken. The system's table of oper and
equivalences looks like this:

Internal String Keyuword Value
ALPHNAME ALPHNAME MYPROG1
$N STCRED Y
(FIRST ,LAST) LINCR null

Secticn 4: Command Creat ion 15

VERSION VERSION NOW
$Y SYMLIST N

OPERAND SUBSTITUTION

After resolution of operands, a substitution process occurs. The result
of the procedure expansion, after operand substitution, is:

ASM MYPROGl,STORED=Y,LINCR=(100,100),VERID=NOW,ISD=Y,~
SYMLIST=N,ASMLIST=Y,CRLIST=Y,STEDIT=Y,ISDLIST=Y,PMDLIST=Y

Note: In the PARAM line, the keyword value of SYMLIST is specified as
$Y; the $ ensures that the calling sequence keyword value (N) asscciated
with SYMLIST is substituted only where the string $Y occurs in the body
of the text. For example, if the dunny operand were SYMLISTI=Y, then,
for every occurrence of string ¥, string N is substituted. Since no
LINCR operand was specified in the procedure call, the default value for
LINCR is substituted.

Each character of the procedure text is ccwmpared with the first claract-
er of each internal string, Lbeginning with the last internal string. If
a matching character is found, the remaining characters of that particu-
iar internal string are ccmpared with the succeeding characters of the
procedure line. Note that the "characters of the procedure line" in-
clude all characters, whether they are characters of a command, ogerand,
comment, or delimiter within the text of the procedure.

Wonen an entire internal string is watched, the characters of the groce-
dure line are replaced by the calling value. Wwhen no match exists, the
other first letters of internal strings are ccrpared with the procedure
line, as akove. If a character in the procedure text is not the same as
the starting character of any of tle operands, no substitution is rade
for that character. The comparison continues with the next character in
the procedure text until all characters in the prccedure have keen
conpared.

If there are no variable operands, the procedure text rerains intact,
and no substitution takes place.

Exanples:

1. Assume a user has defined thkree procedures, PRCCLCAD, FRCCRUK, and
PROCTEST, to perform three different functions. Each has its own
set of operands, which may or may not ke similar in roth name and
nurber. The user would like to ke akle to call any of these prcce-
dures by use of a single name, using a new procedure.

: pvrocdef procall

Sys,User: 0000100 param of,funct,p="list’
0000200 opfunct list

0000300 _end

Later, he invokes FRCCLCAL:
grccall proc,load,'myprogx,l.0,h"50'"

After cperand resolution occurs, substitution takes place. CP,
FUNCT, and LIST are replaced ky PROC, LOAD, and MYPRCGX,1.0,H'50".
Following this substitution, the procedure is executed, and the re-
sult is a new procedure call to PRCCLOAD, with the calling parare-
ters MYPROGX,1.0,H'50"'.

2. The following example shows what harpens if duony crerand nares are
carelessly selected. Assume this procedure has been defined:

76

User: procdef starter

Sys,User: 0000100 param progname,rari=a,b,c,r
0000200 akacus name=progname,a,b,c,r
0000300 _end

later, a procedure call is issued.

starter zap,l.o,c=first,r=loca

After operand resolution and substitution, the result that is ok-
tained is undesirakle.

1.01.0FIRSTUS Ni.OME=ZAF,1.0,,FIRST,LOCA

The PARAM line should have unique character strings for dummy
cperands. The result of subkstitution would have been correct if
the procedure had keen written as follows:

User: procdef starter

Sys,User: 0000100 param progname ,pari=$a, $b, $c, $r
0000200 atacus name=progname,$a,$b,$c,$r
0000300 _end

The procedure call is issued as before:

starter zap,l.0,5c=first,$r=loca

The result is:

ARACUS 2AP,1.0,,FIRST,LCCA

This example illustrates that substituticn occurs cn fulli matches
with cperands in a right-to-left occurrence. Assune that twc prc-
cedures have been defined.

User: procdef fakel

Sys,User: 0000100 param ab,abc,abce,c,e
0000200 if ®"ak'="abe’; display ‘*abce’
0000300 _end
procdef fake2
0000100 param akce,akc,ab,c,e
0000200 if ‘*ab'='abc'; display 'abce'
0000300 _end

The calls made are:
| fakel loca,no,ccnd,c=*"*,e=code
fakez loca,no,cond,c="",e=code
After cperand resolution and substitution:

FAKEL
IF *LOCA*="NO'; DISELAY °CCND'

FAKE2
IF 'COND'="COND®; DISFLAY 'CONDCCLE'

In the call to FAKE1l there is no output. In the call to FAKEZ the .
systerm prints out CONCODE.

Secticn 4: Ccmrrmand Creation 77

B

Note that these two procedures differ only in the order in which
the durmy operands are specified. 1In FAKEl, the system found a
ratch for ABC before it found one for AB; the situation is reversed
in FAKE2.

PROCDEF EXAMFLES

The user is expected to make extensive use of the facilities with which
he can create his own ccmmands, primarily Ly the use of the PROCDEF ccr-

mand.

The user can save time by compining a frequently used series cf

ccmmands into one command. The examples below illustrate PROCDEF usage.

1.

78

The user wants to comkine the CISPLAY and LUMP cormands, and he
wants the option of displaying data at the user's terminal or at
the printer. BAlso, if DUNF is used, an autcoratic LLEF cormand is
generated, defining the data set to be dumped:

Userx: procdef output

Sys,User: 0000100 param alter,datal,data2,data3,dsname
0000200 if 'alter'=''|'alter'='y';display datal,-
0000300 dataz,data3
0000400 if ’alter'='n';ddef pcsout,vi,dsname;dunp-
0000500 datal,data2,data3
0000600 _end

ALTER serves as a switch; if "Y' is sgpecified, cor if ALTER is
onitted, CISPLAY is executed. If °N°' is specified, LCLFF and DUMP
are executed. The user may execute a DUMP to display two data
fields at the printer with the following calling procedure:

output alter=n,datal=fieldl,data2=field2,dsname=data

Only line 300 of CUTPEUT is executed, which causes a LLEF to ke is-
sued and the two fields to ke dumped.

Tc display one data field, the user issues:
ocutput datal=fieldl

Cnly line 200 of OUTPUT is executed. DSNAME need not ke specified,
since the DDEF is not executed.

The user wants to have EDIT and REGICN issued autoratically every
timre he uses the UPDATE command. He defines a procedure:

Usex: procdef change

Sys,User: 0000100 param $ds,$rn
0000200 default sysinx=e; edit $ds,rname=$4rn
0000300 _ default sysinx=g; update
00006400 _end

If the user wants to update a region in a data set, and the text
editor is not invoked, he invckes his prccedure CHANGE. For exam-
ple, tc update the region XYZ in the data set MYLCATA:

change mydata,xyz

Rather than issue a separate PROFILE command whenever he wants a
synonynr or default to ke made part of his user library, the user
causes the PROFILE to be an option of either SYNCNYM or DEFAUIT:
User: procdef def
Sys,User: 0000100 param par,spec,csw,save
0000200 default par=spec
0000300 if "save'='y'; profile csw

0000400 _end

grocdef syn

0000100 param term,string,csw,save
0000200 synonym term=string
0000300 if *save®="y'; rprofile csw
0000400 _end

The user can issue SYN or DEF; however, if he wants tc retain the
syncnynr or default value, he enters SAVE='Y' as an operand of these
two commands. When the save option is selected, the user can also
enter CSW='Y' if he wants to retain ccmmand symkbols.

The user wants to define a procedure tc add a message to his mes-
sage file:

User: procdet bldmsqg

Sys,User: 0000100 paramr msgid=351,text=42
0000200 default sysinx=e
0000300 edit userlib(sysmlf),rname=$1
0000400 __ update
0000500 0 &2
0000600 ___end .
0000700 display °"msg $1 filed®
0000800 _end

Since the EDIT command is included in this procedure, with a memker
nare cf SYSMLF following the LSNAME, the user always gains access
to his message file by issuing BLDMSG.

The user wants to have the FARAM line autcmatically built after
issuing the PROCDEF command:

User: procdef noparam

Sys,User: 0000100 param pname,$1,$2,33,34
0000200 default sysinx=e;procdef pnanme
0000300 parem $1,%$2,53,5%4
0000400 __ default sysinx=g;insert
0000500 _end

The user can issue a PROCDEF and PARAM on one line
noparam pname,dparl,dpar2,dpar3,dparl

and will be prompted to enter the lines for the text of the
procedure.

The user wants to generate a command to eliminate previously de-
fined procedures:

User: procdef destroy

Sys,User: 0000100 param ax
0000200 default sysinx=e; prccdef ax
0000300 __ excise O,last;end;disrlay "ax eliminated’
00004060 _end

To eliminate OUTPUT, which was defined by PRCCDEF in example 1, the
user issues

destroy output
and the procedure shown in éxample 1 is eliminated.
The ccmmand system is provided with a procedure called ZLOGON,

which is automatically invoked when a user logs on. Each user can
define the actions that he wants performed by ZIOGCN with either

Section 4: Command Creation 79

PROCDEF, BUILTIN, or SYNCNYM. For example, a user who uses only
one rrogram might create this procedure:

User: procdef zlogon
Sys,User: 0000100 gqualify pyroll
0000200 pyroll
0000300 _end

Every time he initiates a task, the system qualifies all internal
symbols implicitly, lcads his program, and causes the prograr tc
Start execution. (PYROLL must reside in his USERLIB in order tc be
loaded and executed at this time.)

The user defines a procedure that ascertains current default values
for operands in his user profile:

User: procdef def?

Sys,User: 0000100 param $x
0000200 default sysinx=e
0000300 procdef demo
0000400 param $x=8y
0000500 display °'$x=§y"
0000600 __demo
0000700 excise 0,last
0000800 end
0000900 default sysinx=g
0001000 _end

Now, if the user enters
def? lineno
the system responds with

LINENC=Y

SECTION 5: MESSAGE HANDLING

During a user's task he is 1iké1y to receive any nurber of system mes-
sages that inform him of errors, request necessary information, or
describe the status of some requested operation. These messages are
normally issued from the system message file (the SYSMLF member of SYS-
LIB). When the proper conditions arise, the system calls the user
prompter to display a message from the message file.

MESSAGE GENERATION AND RECEPTION

The user can ccntrol the messages that he receives: he can reset the
LIMEN and BREVITY operands to screen out unwanted messages or to specify
the length of messages he receives; he can change the text of system
messages; and he can add new messages to be issued frcm his own PRCCDEFs
and BUILTIN-defined commands. These operations, described later in this
section, are summarized kelow.

1. To screen out unwanted messages or message ILS, the user can reset
the LIMEN and BREVITY implicit operands by using the DEFAULT con-
mand (as described in Section 6). 1Initially, the user receives
standard messages without the message ID codes (EREVITY=T). These
messages are issued when an error has occurred, and the user must
know about the errcr (LIMEN=W).

2. The user can change the text of system messages. He must create a
nessage file in his own USERLIB (again, member SYSMLF). Then he
can put the new form of the system message in his own message file.
Since the system searches the USERLIB message file before the sys-
tem message file, the user's altered forr is displayed. This pro-
cedure is described later in this section.

3. The user can put new messages in his message file and have the user
prompter display them from PROCDEFs or BUILTIN-defined commands.
This procedure uses the PRMPT command or PRMPT macro instruction
and is described later in this section.

Wwhen the user creates a message file containing his own versions of mes-
sages issued from the system message file, or his own messages for user-
written cormands, other users are not affected because any changes made

to one user's USERLIB do not change another user's task.

Message Exrlanation

The user can issue an EXPLAIN command that causes the system to give an
explanation of a system message or of specific words within a system
message. (See Part III for a description of this command.)

Message Generation

The user can generate a message by calling the user Frerrtex. He issues
either the PRMPT cormmand (see the command description in Part III) or
the PRMPT macro instruction (for assembler language prcgrams; see
Assembler User Macro Instructions) to invoke the user prompter.

Message Filtering

vessage filtering is the process of deterrining which messages the syé—
tem displays. FEach message is classified in each of three categories
when it is created. The three categories, as shown in Table 12, are:

Secticn 5: . Message Handling 81

1. Severity of the message (LIMEN; see Part A of the table)
2. length and type of message (BREVITY; see Part E cf the takle)
3. Mcde cf the user’s task (see Fart C of the table)

SEVERITY: LIMEN is the operand name in the user profile for the severi-
ty of the nessage. The severity codes shown in Table 14 (Part A) are in
order of increasing severity. The user prompter does not display nes-
sages that have a severity code lower than the value of LIMEN. For ex-
ample, if the filter code is X, all X and T messages are displayed; howr
ever, 1 and W wessages are not. The user can change the syster default
for LIMEN (see Appendix C for system defaults) by issuing a DEFAUIT com-
mand with the new LIMEN value. (See "Implicit Operands™ in Secticn 6
for the possikle values of LIMEN and Part III for a description of the
DEFAULT command.)

LENGTH AND TYPE: BREVITY is the operand name for message length and
type. There are six different classifications for this operand. (See:
Table 12, Part B.) The shortest message is the message ID only. ‘The
standard message is the message ID and the message text. (The systen
supplies this version in the system message file.) The extended ressage
is an alternate message that is created at the installation and is used
instead of the standard message. The user can specify that standard or
extended ressages be issued without their message ID. A reference mes-
Sage points tc another message that contains the message text. The user
prompoter displays a message according to the value of BREVITY that is
specified in the user profile. To alter the system default for message
length and tygpe, the user issues a DEFAULT command with the desired
value for EREVITY. {(Note: R is not a default value for BREVITY, but is
specified when the user creates a message that he wants to designate as
a reference message. See the discussion on reference ressages later in
this secticn.)

MCODE: When a user is creating a message, he can specify that it be is-
sued for ccnversational tasks, nonconversational tasks, or both. Be
cannot modify this specification with the DEFAULT command. He specifies
C, B, or B where: C nmessages are displayed only for conversational
tasks, B messages only for nonconversational tasks, and A messages fcr
all tasks, regardless of mode.

Takle 12. Filter codes

r) - - T - T 1
. A. LIMEN |Code|| B. BREVITY |Code]| C. Mode of Task |[Code]|
b e G $-—-+4- . $-—mq
Informaticn } I		Message ID	M	} Conversational	¢	
	1	il				
Warning	W		standard	§		Nonconversational] B
l :	i	H				
Serious Exror	X		Extended	E {{ All (I :		
	I	il				
Terrinate Error	T] standard, no ID	T		i	
i	I I i i I					
			Extended, no ID	X		
	H	N	!			
	{1 Reference	R	1}			
A e e oo — L LX 4 d						

MESSAGE FILE CONSTRUCTICN

The user's message file is a mewber of USERLIE; this mermker is called
SYSMLF. Using the text-editing commands, the user can construct and
maintain his own message file. 7To initiate this process, he enters:

edit userlib(sysmlf),z0047

82

The seccnd parameter, 20047, is the message II for the new message that
is being added to the message file. (The message ID can be from cne to
eight characters.) Notice that the parameter cccupies the RNAME (for
region name) pcsition in the EDIT command. Each message is contained in
its own region in SYSMLF; the region name is the same as the message ID
for the message. Now, since this is a new regicn in the SYSMLF data
set, the system prompts with the first line numker, line 100:

User: edit userlibi(sysmlf),z0047
System: 0000100

Since standard messages are stored at line 0 (see "Message Type and For-
mat" later in this section), the user wants to put his new message at
line 0:

Sys,User: 0000100 _update

(No prompt is issued by UFDATE. The keybcard is unlocked when the user
can enter data. The user enters the following lines.)

User: O wsa this is the message text
end

The underscore at line 100 tells the editor that the user wants to enter
a conrand; he enters the UPLCATE command. Then, he enters the 0 (for
line 0), one blank cnly, the message filter code (WSA), one blank (rore
than cne blank is included as part of the message text), and the nessage
text. The user has created message z0047; the message reads, *this is
the message text™; the filter code (WSA) means: W--a warning message,
5--a standard message, and A--a message for all of his tasks, whether
conversational or nonconversational.

The user may require more than cne line for the text of his message. He
has issued the EDIT command for the existing message ID, 20047 (see
above), and the system has responded with line 100. He then enters:

Sys,User: 0000100 _update
0 wsa this message requires more than one line -
10 wsa this is the continuation of the message
end

In this example, the user has typed a continuation character (hyphen) at
the end of line zero. (A blank precedes the hyphen so that the text of
the lines will not be run together.) When the keybcard is unlocked, the
user enters the next line, which can start with any line number fronr 1
to 99. The next line must be in the same format as the previous line.

Many messages require that variakle text (in most cases, user-defined
names) be inserted in specified positions in the message. These posi-
tions are indicated in the tody of the message Ly the elements SNN,
where N can assume the integer values 1 through 20 and denotes the Nth
element of the parameter sublist in the calling sequence. (Refer to the
PRMPT macrc in Assembler User's Macro Instructions.)

REFERENCE MESSAGE

The user prompter can ke used to reduce the nurber cf times a message
may appear in the message file and still maintain unique message IDs for
every distinct call to a message. For exanple, if user message XYZ is
established with text identical to the text of system message ABC, mes-
sage XYZ can point to ABC rather than repeat the text cf ABC. Message
XYZ is created as a reference message.

To use a reference message the user must:

Section 5: Message Handling 83

* Put am R in the second position of the message classification code
(for example, WRA) for a message that is referencing another nes-
sage. One blank must follow the message classification code.

® Put the ID of the referenced message in the eight positions that im-
mediately follow the blank. Blanks must ke added to the end cf the
message ID if the ID does not occupy all €ight rositicns.

e Put the line number of the references message in the seven positions
of the iine that immediately fcllow the message IL.

Example: The construction of a reference message is as follows:
WRADLABCEELLbL0O000000

(In this example, the symkol t indicates a tlank.) This causes a refer-
ence to line 0 of message ABC whenever message XYZ is issued. A user is
limited to 15 reference pointers in one chain in locating a desired
text.

MESSAGE TYPES AND FORMAT

There are five types of messages in the message file: standard, extend-
ed, response, explanaticn, and word explanation. 2all or any of these
types can be used for each message ID. (Note: in the examples below,
One blank nust separate the message classification code from the line
numker, and one blank separates the line number from the message text.)

¢ Standard message is a krief communication from a program to the
user. A standard message always begins on line 0, and continuatiocon
lines can be on lines 1-99. (See the examples under "Message File
Ccnstruction™ akove.)

¢« Extended message is an alternate message that is issued instead of
the standard message. An extended ressage kbegins cn line 100 and
can be continued on lines 101-199. For exanple, the user wants to
add an extended mess.ge for the existing message ID 20047. He types
in:

User: edit userlib(sysmlf),z0047
Sys,User: update
100 wea this is an alternate message -
105 wea tc be used in place of the -
110 wea standard message when krevity -
115 wea has keen defaulted to e.
_end
If the user wishes to reference the text cf the extended message for
XYZ005, instead of %0047, he enters:

100 wra xyz005kk0000100

(You should make special note of the R in the seccnd rosition of the
classification code and of the reference to line 0000100, where the
text of the extended message is located.)

* Response message can be in one of the three forns listed telow. The
respcnse line begins on line 200 and can ke continued on lines 201-
299. Forms of response message:

1. Text that states the possikle responses to the message. This

line is used for messages with unpredictable responses, and it
is issued when an EXPLAIN RESPONSE is entered Ly the user.

84

(SeePart III.) To add a response line for existing message ID
MNQO41, which expects a response, the user enters:

User: edit userlibk(sysmlf) ,mn041
Sys,User: update
200 wsa this line explains the-
205 wsa expected response for -
210 wsa message mnl4l
end

When the user issues EXPLAIN RESPONSE, the system displays the
text of line 200 and any continuation lines (in this case, lines
205 and 210).

2. A set of predictable response words (for exarrle, yes or no) and
their associated response codes. Each predictable response word
must have, as a response code, a unique positive integer. A
response must be in the form

wordl=cedel,word2=code2,...,wordn=coden

and can be entered as follows (assume that the user has issued
UPEATE and the keyboard is unlocked):

200 wsa yes=1,no=2

The codes are used ky the user prompter as return codes to the
issuing program to indicate which respcnse was entered Lty the
user. For the example just given, if the user issues EXPLAIN
RESPONSE after a message is displayed, the system prints cut:

VALID REPONSES ARE: YES,NO

3. A resrpcnse line can reference the response line (line 200) of
ancther message. It must ke set up in the same format as all
reference messages (see the discussion on reference messages,
above).

Explanaticn message makes clear a standard message or an extended
message. An explanation message begins on line 300 and can ke ccn-
tinued on lines 301-399. For example, the user wishes to add an ex-
planaticn message fcr the existing message ID Z0047. He enters:

User: edit userlik(sysmlf),z0047

update

300 wsa this line is displayed -

305 wsa when the user enters -

310 wsa explain immediately after the -

315 wsa standard message at his terminal

_end
Word exrlanation clarifies one or more words in a message. Wcrd ex-
planaticn messages begin on line 400 and above. For example, the
user enters:

User: edit userlib(sysmlf) ,f££f001
0000100 _update
0 wsa this message contains references to wordl and word2
400 wsa wordlbbbthese lines are for exglanaticns
500 wsa word2kkkof words that appear in the standard message
_end
The first eight positions of thke text are for the word to be
explained, and the rest of the line is for the explanation. When
the EXPLAIN cormand is issued, with a specific wcrd as the operand,

Section 5: Message Handling 85

immediately after a standard mwessage is displayed, the lines start-
ing with line 400 are searched to see if an explanation is available
for the requested wcrd.

The fcrmat of a VISAM variakle-length record is:

0 y 12 19 20

r Al T T T T----T—'—“_ T T - -
| record} message 1D | line |nct | message |
| length} (regicn name) | number |usedj] text |
| RO, L L L L e e ’)
< record length (maximum cf 256 bytes)————— e ___ >

The format of the message text (bytes 20-255) varies with the type of
message. For all types of messages kytes 20-22 contain a message clas-
sification code and byte 23 is klank. Bytes 24 to the end of the line
contain different information, as shown in Takle 13. You can use one of
the nurbered items (for each message type) shown under the content of
the message.

Table 13. VNMessage content
r YT T T T T T T e e e e ===
| Message Type | Content (Byte 24 to End of the Line) }
k= ; e
| Standard } (1) Message text |
| (Line 0) | |
| | (2) Bytes 2u4-31 Reference message 1ILC |
| l Bytes 32-38 Reference 1line number |
| | Bytes 39 on Unused |
p—m e oo —— i
| Extended } (1) message text [
| (Line 100) | |
| | (2) Bytes 24-31 Reference message ID |
|] Bytes 32-38 Reference line nurnker |
| i Bytes 39 on Unused {
— - -
| Response] (1) Explanation of response tc be entered |
{ {(Line 200) | |
] | (2) wordl=codel,wcrd2=code2,...,wordn=coden |
| | |
| | (3) Bytes 24-31 Reference message IL |
]] Bytes 32-38 Reference line number |
| | Bytes 39 on Unused |
O TR -y
| Message - | (1) Message explanation text |
| Explanation j |
| (Line 300) | (2) Bytes 24-31 Reference message ID |
|) Bytes 32-38 Reference 1line nurnkter |
i] Bytes 39 on Unused |
k + - e -4
| word { (1) Bytes 24-31 Wcrd tc be exrlained |
| Explanation | Bytes 32 on Word explanation text |
| (Line 400) | |
| { (2) Bytes 24-31 Word to be explained [
| { Bytes 32-39 Reference mressage IL l
] | Bytes u40-46 Reference line number]
| i Byte 47 Blank |
i } Bytes 48-55 Reference word {
| | Bytes 56 on Unused ‘ |
S —— S T - _— _——— 4
i Note: The user must cbserve strict byte alignment in message fields.|
L —_ J

Word Explanation Scope

The scope of word explanations varies, derending cn the wcrd. For exam-
ple, some word explanations are universal in scope. Cther word explana~
tions are universal within a major component of TSS, such as the command
system. Still others are limited to the particular message in which
they appear. Broad scores are an advantage because fewer explanation
records are needed, which reduces the size of the message file. 1The
user can regulate the scope of word explanations to favor his particular
operation. '

The scope of a word explanation is indicated ky an eight-Lyte message
IC. Explanations with universal scope have an all-blank message ID
(that is, a blank region name). For a sccpe restricted tc a single mes-
Sage, the full eight-byte message ID is used. Identification codes can
be assigned in a pattern tc allow various levels of scope, between
universal and fully restrictive. All message IDs fcr the command syster
start with CZA. Words whose meaning is universal in sccge within the
comrand syster would have an identification code of CZA. If the scope
were limited tc a particular module, say CZATP, the identification code
would be CZATP. The scope is further restricted to a particular ressage
by adding the final three digits, which are unique within the module.

The user prcmpter has two one-kyte masks that allow users to control the
user prompter's search for word explanations. O©One mask is for the sys-
tem message file, and one is for the user message file. Each bit in the
mask corresponds to one position in the ID of the message that contains
the explainable word. For example, bits 0-7 in the sccre mask corres-
pond to positions 1-8 in the message ID. The scope mask indicates hcw
many positions in the message ID are to be compared when a search is
made for a word-explantion record. The user crcnpter scans the mask,
starting on the right with kit 7. It looks for bits set to 1. Each 1
bit found causes an access to the message file. The message file is
searched for the message ID, keginning with position 1 and continuing
through the position that corresponds to the mask bit that is one.

For example, bits 7, 4, and 2 are turned on in- the user scope mask. A
message with the ID ABCXX200 is issued. This message has an explainable
word, DSNAME, and the user issues EXPLAIN DSNAME. In the search, all
eight positions of the rmessage ID are used first because bit 7 is on;
therefore, lines 400 and above in the region RECXX200 are searched for
the word CSNAME. Next, the lines 400 and above in the region ABCXX, if
it exists, are searched kecause kit 4 is on; and then the lines 400 and
above in the region aBC, if it exists, are searched because bit 2 is on.
The all-blank region is searched last. If DSNAME is not found in the
user message file or in the system message file, a diagncstic message is
issued that indicates that no explanation is available.

Both the syster mask and the user mask are located in the character
switch table, which is a section of the user profile (see Appendix C).
The user scope mask ray be changed by using the MCAST command. The sys-
tem mask and the user mask are set initially, as a part of the prototype
profile.

Section 5¢ Message Handling 87

SECTION 6: THE USER PRCFIILE

The user profile is the data set that controls the user's operating
environment. It contains the default values for omitted operands, the
values for implicit operands, synonyms that the user creates for conrand
names or operands, command symkols estaklished with the PCS SET command
(see Section 3), and a rair of character translation tabkles -- one for
input, and cne for output.

wWhen a user is first connected to TSS, he is provided with a protctyge
profile; this contains cnly system-supplied default values, implicit
operand values, and the translation tables (including certain miscel-
laneous contrcl characters that are descriked in Arpendix C). Then,
when the user first initiates a task (via LOGCN), the system searches
his user library (USERLIB) for a user profile {(memker SYSPRX). If SYS-
PRX cannot ke found -- this occurs when the user first lcgs on to the
systen or after he erases his profile -- the system uses the protctype
profile member (SYSPRX) as the task profile.

The user creates a user profile ky issuing a PROFILE cormand. Then,
when he logs on later, the SYSPRX member in his USERLIB is used tc cre-
ate his task profile. The prototype prefile is not used as long as
there is a USERLIB (SYSERX) member for this user. The user can erase
his user prcfile by issuing the following command:

ERASE USERLIB(SYSPRX)

I - 1
SYSLIB |Prototype profile resides in SYSLIE as wemnker SYSPRX. It is |
lccried into stcrage if there is no user profile in USERLIE. |
Ly _— ————l
|
|
——t _— _— 1
USERLIEB |User's profile (memker SYSPRX) is copied into storage frorm {
] USERLIB every time a LOGON conrand is issued. |
L - J U, S i
| LOGON (every session) | FROFILE (whenever user wishes)
{ |
——h L \
VIRTUAL |Changes made during task are entered on this cory; PROFILE |
STORAGE |comrmand causes task profile to replace the one in USERIIE.]
Lo _ il

The task profile controls the user's operating environment. The user
can alter his task profile with the SYNONYM, DEFAULT, MCAST, and MCASTAB
commands; then he can make the changes a part of his permanent user pro-
file with the FROFIIE: command. The user prcfile management commands are
surnarized in Table 14.

Table 14. User profile management commands

— T == h]
| Cecrmana | Function]
b 4 1
| SYNONYM | Rename cormands, keywords, PCS operands, or command |
| | statements. |
| DEFAULT | add, replace, or delete entries in default table. }
| PROFILE | Make changes to task profile permanent in user profile. |
| MCAST | Alter miscellaneocus control characters. |
{ MCASTAR | Alter input and output translation tables. |
L i —_— — 3

88

SYNONYMS AND CEFAULTS

The user can alter default values with the DEFAULT command. Default
values are used by the system when operands needed by the syster are not
included when the user enters a command. Appendix C shows the default
values for the system operands. Note that not all operands have system-
supplied default values.

To change the default value for an operand, the user enters the DEFAULT
command giving the name of the operand and the new value:

default regsize=7

The default value for the REGSIZE operand is now set to 7 for the
remainder of the task, or until the user again alters it. This new
value is set in the task profile.

The user can rename keyword operands or commands with the SYNONYM comr-
mand. He enters the new name, an equal sign, and the old name:

synonymw E=pc?

Now, when the user enters the P command, the system executes the PC?
comrand.

To remove the effects of a SYNONYM or DEFAULT command, the user enters
the command this way:

synonym p={press RETURN)
default regsize=(press RETURN)

Since nc value appears to the right of the equal sign in these exanples,
the current settings are destroyed. Changes rade with SYNCNYM and
DEFAULT in this way are made to the task profile. If the user logs off
and again lcgs on, the values in the new task profile are taken from the
user profile or the prototype profile, neither of which was changed.

PROFILE CONMAND

To make changes permanent, the user issues the PROFILE command after the
DEFAULT or SYNONYM command. For example:

default regsize=7
profiije

Now, the value of REGSIZE is 7 in subsequent tasks until the user alters
it. If the value is changed later, the user can make that value rerma-
nent with . the PROFILE comrand. For example:

default regsize=(press RETURN)
profile

IMPLICIT OPERANDS

Implicit operands are nct entered with any command. Rather, they con-
trol certain aspects of the user's operating environment. For exanple,
the LINENO implicit operand indicates whether the user wants the text
editor to prompt with line numbers or tc unlock the keytoard and do no
prompting. The system value is Y (line numbers are disglayed). 1If the
user does not want these line numbers (especially when a data set is pe-

Section 6: The User Profile 89

ing listed at the terminal) he can change the value cf LINENO with the
DEFAULT command, just as he changed the value of a conrand operand.

default lineno=n
Again, this change is made only in the task prcfile; the user can then
issue the ERCFILE command to make the change permanent in the user
profile.

vefault values for command operands and implicit operands are shown in
Appendix C. Table 15 lists the implicit cperands and their functicns.

Table 15.

Inplicit operands

r———="= =T " =T - T]
|Cperand | Function | System Default Value| Cther Valves |
- 4 1 1
T T T =T =

|ALPHABET| controls character|i - folded mode i2 full EBCLCIC |
| |set used at the | |3 PITC/6 |
} | terminal | ju PITC/8]
’ $ } ———4 |
BREVITY	wessage length	T - standard without	{M - message ID
		ressage IC	E - extended message
			s standard message
{] 1X extended without		
		{ message IC	
P 1 + + 1			
CLEANUP	controls cleanup	Y - user attenticn-	N user attention-
	of user attention-	handling is	handling is
}	handling when EXIT] cleanad ug	ignored	
{	lis issued for a		{
l	level 1 program	} I	
— 4 1 - 4 4			
L T T T Al			
CONPRMPT	ccntrols record-	Y - prompt character	N no prompt
i | concatenation | is issued i character]
i | crompt character | i |
- — i e ——— e . _.’
L] T R T

JCONREC |controls record- [N - no reccrd- R4 record-]
| | concatenation I concatenation H concatenation I
| | processing | processing | processing is |
|] | | done |
— ——-t e} ~
| DEPROMPT | prompting during |Y - prompt for dis- |N nc prompt |
i | ERASE and DELETE | position | |
- + t ¥ 1
| DIAGREG |controls display [N - registers are 1Y registers are |
i |of registers | not displayed i displayed |
{ jduring ABEND i | |
F + + 1 {
| HEXSW |control characters|x% - indicates hexa-|user defined |
| jused to indicate | decimral input | |
| jhexadecimal pro- | follows H |
| | cessing | | I
L 1 4 - i |
| T Ll T . . 1
{ LIMEN |ressage severity |W - warning message |I information |
} {] I X serious errcr]
i] I IT terminate error |
P t $ + - St
{LINENO |controls line {¥ - line numbers iN nc line numkers |
} | rumber issuance i are issued { are issued |
b + $ + -
|ASMALIGN| controls alignment|Y - source code IN scurce code not |
] |of source code in | aligned ! aligned |
| | assembler list I | |
! |data set | | |
L 4L L 3 "}

O
o

SECTICN 7: FRCGRAM PRCLCUCT LANGUAGE INTERFACE (PPLI)

PROGRAM PRCDUCTS UNDER 1TSS

TSS allows the execution of CS/VS ccmpilers via interface modules. The
compi lers thenselves are not changed; restructuring of the object code
after the program product is installed ¢cn a TSS syster is done to allow
the prograr product to execute under TSS. To provide suitable inter-
faces, a certain degree of 0S/VS simulation nas been implemented.

The sequential, index-sequential, direct, and partitioned access nethods
are logically simulated; the data records are physically maintained in
TSS formatted data sets and are processed internally tc simulate 0OS/VS
data set characteristics.

0S/VS Supervisor Call functions such as GETMAIN/FREEMAIN and TIME are
simulated at the functional level.

The simulation restrictions on CS/VS okject programs executing under TSS
are primarily related to VSAaM, and telecommunications access methcds.
Functions related to multitasking are ignored. 1SS restrictions remain
in effect.

PROGRAM PRODUCTIS SUPPCRTED

The IBM Program products supported are as fcllows:
5734-A31 Assembler H
5740~CE1 VS COBOL Compiler & Library
5734-F0O3 FORTRAN IV (H Extended) Compiler
5734-1LM3 FORTRAN IV Library Mod II
5734-PL1 PL/I Optimizing Compiler
5S734-1LM4 P L/1 Resident Likrary
5734-1LM5 PL/I Transient Library
5734-P13 PL/I Optimizing Compiler and Likraries.
Hote: 1Installation of these program products occurs using the PPREAD

comrand (described in the System Programmer®s Cuide) and installation
scripts supplied.

PROGRAM PRODUCT LANGUAGE INTERFACE COMMANLS

The PPLI commands are as follows:
COBOL FILEREL HASN CSCD? PLICPT
FILEDEF FTNH oDcC OSRUN

These commands are discussed in alphabetical sequence in the Command
Section c¢f this manual.

Section 7: Frogram Froduct Language Interface 91

PART IIXI: COMMAND DESCRIPTIONS

This part contains format illustrations, descriptions, and examples of
the use of the commands. The cormands appear in alphaketical order.
The symkbol is used in the left-hand margin tc help you find a ccrnmand.

If you do not need detailed information on the format of a command, but
need only a review of the operands, you should turn tc Appendix G. You
should review Part I before you look at the ccrrand descriptions if you
are not familiar with the way commands are described in this boock.

The forrat illustration of some commands show all operands within brac-
kets ([1). This indicates that you do not have to enter any operand
Wwith the ccrmand. The action that the system takes when you do nct spe-
cify an operand is discussed with the command. If an operand can be
entered in keyword format, the keyword is shown in all-capital letters.
If an operand is in lowercase letters, you cannot use keyword notation.

ABEND Command

This command returns the user's task to the status that existed after
the LOGCN process.

T
|operation|Operand
b t
|AB
b

END |

L -

[—L-—J

Note: There are no orerands.

Functional Description: Wwhen ABENL is executed, the current task is
Yerminated. A new task is created, as if you had issued ancther LOGON
comrand. All data set definitions, open data sets, and task variables
are elinrinated.

Note: If you issue the ccmwmand DEFAULT DIAGREG=Y before you issue
ABEND, the system displays general register contents following the
ABEND. The system default for DIAGREG is N.

Exanple: Termination, using ABEND, is as follows:

User: (press ATTENTICK key once)
System: !

User: abend

Systen: TASK DELETED BY CCMMAND

NEW TASK LCGGED CN AT 11:12 ON 06/09/71. TASKILC = 002D

ABENDREG Ccrmand

This command displays the contents of general registers when ABRENL oc-
curred and the location within your task where the ABEND occurred.

T
peration|Operand
1

T
ABENDREG |

8 -

L
Note: There are no operands.

92

Functional Cescription: After your task has keen aknormally terminated
by the system, or after you have entered the ABEND ccmmand, you may use
the ABENDREG command to display the general registers at the time termi-
nation occurred. No display occurs if your task has not keen terrinated
abnormally.

Example: Your task has just keen abnormally terminated, and you want to
see the contents of the general registers at termination:

User: abendreg
System:

ABEND IN PRIV PRG CZASBC +000902, LAST USER LOC AT CFALBC +0003E8

USER GRS 003C47A8 00007438 00113000 0001177n 00006BCO 00008058 00112000 00000017
00008054 00539DEC 0000804C 00006200 00011000 00007020 001125D8 00000008

PRIV GRS 000000FF 000598F8 00000008 00000048 00011740 00135E76 001354B8 0001C549
00000000 00001000 O042FOBC 001C68AC 000593R8 00059440 001C6902 001BC000

a

ASM Command

This comnmand invokes the assemkler to assemble a source program module.

+ ‘
10peration|0perand
i

T
|ASM |NAME=module name[,STCREE={Y|N}]
| (,MACROLIB=({data definition name of symbolic portion,
| data definition name of index portion}{,...1)]
|[,VERID=VerSi0n identification][,ISD={Y|N}][,SYNLIST={Y(N}]
| {,ASMLIST={Y|N}][,CRLIST={Y|N|E}]
l[,STEDIT={Y|N}][,ISDLIST={Y|N}][,PMDIIST={Y|N}]

{[,LISTDS={Y|N}][,LINCR=(first line number, increment)]
L

I S

[oo e s oo W

NAME
jdentifies the okject module to be created.

iIf the source program module (that is, the source language data
set) is prestored, the user must have named it SCURCE.name. If it
is nct prestored, the system automatically prefixes SOURCE. to the
source program module name. The listing data set is automatically
named LISTI.name(0).

specified as: the part of the source program module name that fol-
Tows SOURCE., if the source program is prestored; otherwise, any
nare from one to eight alphameric characters long. The first
character mist be alghaktetic. The okject module name must be
unique to the library in which it is stored. See Bssembler Prxo-

grammer's Guide for a complete list of naming rules.

STORED
specifies whether or not the source procgranm rodule is prestored
(that is, whether cr not the data set SOURCE.narme exists).

specified as:

Y - scurce program is prestored.
N - source program is not prestored.

Systen defanlt: N.

MACROLIB
specifies the data definition name cf the symbolic portion of the
supplementary macro likrary tc be used and the data definition name
of the index porticn of that library. Both names must have been
defined by DDEF conmands within the current task. The user can
specify a maximum of six likraries (that is, six pairs of data

Part III: Command LCescripticns 93

definition names), which are searched in the opposite order in
which they were specified; the syster macrc likrary (SYSMAC) is
made available to the user automatically and is searched last.

specified as: the data definition names defined in the LLEF
corrands .

system default: only the syster racrc likrary is used.

VERID

specifies the version identificaticn tc ke assigned to the object

prcegram.

specified as: from one to eight alphameric characters.

system default: the listing and the object wmodules are time stamped

ISD
specifies whether an internal symbcl dictionary (IsSD) is to be
produced.
specified as:
Y - ISD is produced.
N - ISLC is not produced.
systenr default: Y.
SYMLIST
specifies whether a sywrbclic source pregram listing is to be
produced.
Specified as:
Y - listing is produced.
N - listing is not produced.
syster default: N.
ASMLIST
specifies whether an object program listing is to ke produced.
specified as:
Y - listing is produced.
N - listing is not produced.
syster default: Y.
CRLIST .
specifies whether a cross-reference listing is to ke produced.
specified as:
y - cross-reference listing is produced.
N - cross-reference listing is not produced.
P - cross-reference listing of only the symbols actually used is
produced.
System default: N.
STEDIT

specifies whether the edited symbol takle is to te listed.

9y

Specified as:

Y - edited symbol takle is listed.
N - edited symkol takle is not listed.

Systenr default: N.

ISDLIST
specifies whether an ISD listing is tc be produced.

Specified as:

Y - ISD listing is produced.
N - ISC listing is not produced.

Systen default: N

PMDIIST
specifies whether a program mcdule dicticnary (PMD) listing is to

be prcduced.

Specified as:

Y - PMD listing is prcduced.
N - PMLC listing is not produced.

Systen default: N.

LISIDS
determines whether the user-requested listings from the assenbler
are tc be placed in a list data set or are tc ke placed directly on
SYSOUT.

Specified as:

Y - listings are placed in list data set.
N - listings to SYSOUIL.

Systen default: Y.

LINCR
specifies the first line number of the source language data set and
the increment to be applied to get succeeding line numkers.

specified as: two three- to seven-digit decimal numbers, separated
by a comma and enclosed in parentheses; the last two digits in each
number must be zeros.

system default: (100,100).

Note: This operand is ignored when STOREL=Y.

There is also an operand called the ASMALIGN cperand. ASMALIGN is not
an operand of the AsM command, tut is instead an implicit operand (Sec-
tion 6, Part II explains implicit operands). ASMALIGN controls the ali-
gnment of the source statements in the assembler list data set.

If you issue CEFAULT ASMALIGN=Y prior to issuing the ASM command, all
names, operation codes, and operands in your scurce ccde will be aligned
in columns 1, 10, and 16 (respectively) in the list data set. ASMALIGN=
Y is the system default; if you desire alignment and haven't specified
otherwise, alignment is automatic. However if you do not want your
source statements aligned, issue DEFAULT ASMALIGN=N prior to issuing the
ASM command, and your source statements will appear in the list data set
just as you entered them.

Part III: Command Descripticns 95

Punctional Description: See "Language Processing® in Section 3 of Part

II.

caution: The command is canceled if invalid operands are entered.

Examples: (refer also to BAssembler Programmexr's Guide)

1.

9%

The user wants to assemble a prestored scurce program (SOURCE.
IRISH); he wants an ISD and a source program listing:

User: asm irish,y,isd=y

The system assemkles the program SOURCE. IRISH and acknowledges suc-
cessful assembly by prompting with an underscore.

The user wants to assemble a program as he enters it. The ccrrands
and data he enters from the terminal are as follows:

Sys,User: asm tester,n,symlist=y

0000100 save (14,12)

0000200 1 14,71(0,13)

0000300 st 14,8(0,13)

0000400 st 13,4(0,14

0000400 E *%* OPFRAND FIELD IMPROPERLY DELIMITED
0000400 ST 13,4(0,14

#400, st 13,4(0,148)

#

0000500 ir 13,%

0000500 E *%% STATEMENT CONTAINS INVALID CHARACTER
0000500 IR 13,%

#500, 1r 13,14

#

0002600 end

MODIFICATIONS?

n
0000200 W *** OPERAND REQUIRES FULL-WORD BOUNDARY
MINCR ERRORS

The user wants to create his own macro instruction library fcr use
with the assembler. The data definition narme cf the macro instruc-
ticn library VISAM data set must be SCURCE; the data definition
name of the macro instruction library index VSAM data set must ke
INCEX. The index is created to facilitate reference to the library
by use of an IBEM utility program, SYSINDEX.

User: ddef source,vi,mylib
edit mylib

The user creates a VISAM data set. He will use the symbol) as a
header flag character.

Sys,User: 0000100 Jmacrol .

Line 100 is the header of MACKCl. Lines 200 thrcugh 600, which are
the text of MACROl, are not skrown.

0000700)macro?2
Line 700 is the header of MACRO2. Lines 800 thrcugh 1500, wkich

are text of MACRC2, are not shown. The user ends processing of the
FCIT ccmmand (see EDIT) as follows:

00001600 _end

Next, the user defines a macro instruction library index and calls
SYSINDEX.

User: ddef index,vs,myndx’
sysindex

The system prompts the user for control staterents.

sys,User: header=),length=8
asm myprog,y, (source, index)

The user assembles his progranm.

AT comnand

This command requests notification when executicn of an okject program
reaches specific instruction locations. AT also designates the okject
prograr instruction locations at which the commands following AT in the
dynamic statement are tc be executed.

— - — S —_—
|Operation|0perand }
i

+
AT {instruction locationl,...] |
i

instruction location
specifies the location of an instruction within an okject module.

specified as: an internal or external symbol, with or without off-
set cor subscript, or a hexadecimal address.

Functicnal Lescription: AT kecomes effective when control arrives at
the instruction location specified in the cperand, hut kefore the in-
struction at that location is executed. A command statement containing
an AT is called a dynamic statement. Only one RT ray ke included in a
dynamic statement, and it must ke the first command in the statement.
(See "Use of Command statements™ in Section 3 of Part II. Note the list
of cormmands that can be used after AT.) The system assigns a number to
each dynaric statement. This number may be referenced by the REMCVE

comrand.

when an AT cormrand is executed, a standard output (including the in-
struction location where the command became effective, program status
information, and the statement number is presented to the user. If
LIMEN is not set to I, cnly the dynamic statement nurker is disglayed.
If the AT is a conditional statement, the dynamic statement nurber is
displayed only if the condition is true. The program status information
includes the virtual storage location of the instruction teing executed,
the instruction length code, the condition code, and the program mask.
If the user refers to an instruction location in a shared program or in
a system program, a diagnostic message is issued, and the command is
ignored for that location. A diagnostic is also issued if the instruc-
tion location contains a supervisor call (SVC) operation requiring para-
meters that must follow the SVC.

The counter, referred tc ky the special character %, is assigned to a
dynamic statement and is incremented by one when the program arrives at
an instruction location designated in the AT conmand. The counter is
jncrewrented even when the dynamic statement is conditional if the speci-
fied location is reached. The counter ray be used as an ogerand in the
other PCS commands within the statement. The AT command alone will

Part IIX: <Conrand Cescripticns %7

interrupt, but not stop, prograr execution. (See "Types of Operand
specifications® in Secticn 3 of Part II.)

caution: The user should not designate an instructicn location tlrat was
modified by program execution. If he does, the results are unpredict-
able. Alsc, since PCS cnly checks that the AT locaticn is on a halfword
boundary, the user must te careful to put the AT command at the begin-
ning of an instruction, not in the middle.

progranming Notes: If AT specifies FCRTRAN statement numbers as in-
struction locations, the numbers must only designate executable FCRTRAN
statements.

Example: The user wants tc be informed when his prcgram reaches the
Jocations PGM.S1, PGM.S3.(4), FTNPGN.98, and FTNPGM.98(5).

To acccnplish this,

User: at pgm.sl,pgm.s3.(4),ftnpgm. 98, ftnpgr.98(5)

Systen: 00001
Execution of the program begins. When control arrives at any of the in-
struction lccations, the user is notified. For example, the systern

primts ocut the following line (assuming LIMEN=I) when it reaches the
third location specified in the command:

Systemn: AT PTNPGM.98 PSW 1 3 0 0O003F076 0001
In this statement

FINPGM.98 is the instruction location

PSW 1 3 0 O003F076 is the program status

0001 is the statement numwber assigned ky the syster

Note: If LIMEN had not keen set to I, only 0001 would have been printed
by the system.

BACK Command

This command converts the user's conversaticnal task tc a nonconversa-
tional task.

r- T - 1
|Cperaticn|Operand |
L e e e e e e e e i e o o e s o e e e o e e ~
¥ T

| BACK |DSNAME=data set name 1
L i - ——— 3
DSNAME

identifies the cataloged VSAM or VISAM line data set (new SYSIN)
that ccntains the series of commands that complete the current task
in nonconversational mode.

specified as: a fully qualified data set name.

Functional Description: If space for a nonconversaticnal task is avail-
able, the user's task is accepted for execution, and a katch sequence
number (BSN) is assigned to tha task. Control of the task is passed to
a new SYSIN. The nonconversational task takes its commands from the
SYSIN data set named in the BACKR operand field. The SYSIN data set
should conclude with a LOGOFF command; if it does not, the system per-
forms the LOGOEF operation and issues a diagncstic message.

If space for a nonconversational task is not availatle fcr the user's
task, the PACK command is rejected. This allows the user to continue

98

his task in conversational mode, as though he had not issuved the EACK
command.

A BACK comrrand is not accepted if the system is being shut down.

caution: If private devices are needed by a nonconversational task that
is initiated by the BACK command, €ach device must be either: (1) as-
signed to the task by an active data definition (DDEF), or (2) reserved
by a SECURE command, which must be the first ccmmand (other than GC) of

the SYSIN dataset.

progranming Notes: The BACK command is ignored by the system when it is
issued by a ncnconversational task.

After issuing the BACK command, the user must re-issue the LOGON corrand
to kegin a new conversational task.

If the BACK command is rejected, the user can re-issue the command
later. It may be necessary to first modify the new SYSIN data set to
reflect any further conversational processing that has been done.

If the user interrupts a program that is being executed when he issues
the BACK command, the first command in his SYSIN data set should ke GC,
which causes gprogram execution to resume at the point of interruption.

When the user wants to jnitiate a nonconversational task that does nct
require a prior conversational phase, he shculd use the EXECUTE command.
The data set named as SYSIN in the EXECUTE oommand, unlike that namwed in
the BACK command, must begin with LOGON and conclude with LCGOFF, and
must be on public storage.

Example: The user wants to change his conversational task to nonconver-
sational, using the data set ALFHA as SYSIN for his nonconversaticnal
task. He issues the BACK command as follows:

User: back alpha
Systen: BsSN=0001

TERMINAL LOGICALLY DISCCNNECTED, RECONNECT OR HANG UP

BEGIN Corxwrand

This command connects the user's task to an MTT aprlicaticn program run-
ning under TSS.

" T . 4
109eration|0perands i
F t —————
| BEGIN |application nare [,application parameters] {
[1 y]

application name
specifies the user-written aprlication program name.

specified as: from one to eight alphameric characters.

application parameters
specifies the user-written operand parameters (if any) that are
entered according to the requirements of the application.

Note: The applicaticn program must define a means by which its current
users may elect to be disconnected. Cnce the user is connected to the
applicaticn program, any commands that have been defined by the applica-
tion program can be entered.

Part IXII: Command Descriptions 99

BLIP Cormrand

The 'BLIP' command allows the user to receive assurance that the system
is still active and the terminal is connected. This command is only
valid for 2741's or their eguivalent.

r —T == |
l0perat10n|0perand i
--------- t -y
| BLIP | TIME=, *READ= |
U B H
TIME

the decimal value given is the number cf seconds tetween the sig-
nals tc the user. If 0 is entered, no assurance signal will ke
given by the system.

specified as: 0, cr 15 through 255 (seconds).

system default: 30 (seconds).

*READ
If REAL is specified and the terminal has the 'Receive Interrupt
Feature' the system will interrupt 2 read request tc send the
assurance signal as long as the user has not entered any data.

specified as:
Y = interrupt a read.
N = dc nct interrupt read.

syster default: RN

#unctional Cescription: The system causes the type ball on the terrminal
to ‘'wiggle® by transmitting alternating upper case - lcwer case shift
characters.

The period between the transmitting of the characters is determrined by
the 'TIME' parameter.

If the TIME is zero, then no transnission cccurs.

If the user has specified READ=Y, and the terminal has the correct fea-
ture, the system will interrupt a read to send the 'ball wiggle®
transmission.

The syster will not interrupt a read request if the user has started
entering data.

progranming Nctes: The blip is supported only on 2741 type terminals.
If the user specifies READ=Y for a terminal without the correct feature,
the system will attempt the character transmission, kut because the ter-
minal will be in the wrong mode, the ball wiggle will not ke seen by the
user.

Also, any characters entered by the user during this period will ke
lost.

The system attempts to prevent loss of data by not interrupting a read
once the user has started entering data, but because of hardware con-
straints, there is a very small period of time when the user may enter a
character and the system will interrupt to send the '*all wiggle'; at
that time, any data entered is lost.

100

Example: User enters:

ELIF 15

The system will blip-wiggle the type ball every 15 seconds as long as
there are no other reads or messages to be written to the terminal.

If the user wishes to turn off the bkall wiggle, he enters:
ELIP O

The system will not wiggle the ball again until the user enters a new
BLIP TIME value.

BLIP? Command

BLIP? is used to display the current BLIP settings.

— M 1
jOperation|Operand |
——— + i
|BLIP? | |
L L —— 3

Note: This command has no operands.

Functional Description: BLIP? will display the current ELIP settings
in the following format:

CURRENT VALUES ARE:
TIME XX
READ ACTIVE/NOT ACTIVE

The time value is the decimral number of seccnds between ELIPS. Read Ac-

tive specifies that a read will ke interrupted to cause the type ball to
wiggle.

BRANCH Command

This command changes the ccntrol path of a prcgram cr resumes execution
of a program at a different location.

L T
|Operation|Operand

[N S

| BRANCH JINSTLOC=instruction location
i L

INSTILCC
specifies the location of an instruction within an okject module at
which execution is to resume.

Specified as: an explicitly or implicitly qualified internal sym-
bol, with or without offset; an external symbol, with or without
offset; cr a hexadecimal address.

Functional Cescription: If the user has interrupted a program, BRANCH
can ve used to resume execution of the program at a different location.
BRANCH can also be used as part of a dynamic statement to alter the path
of a program.

Part III: cConnand Cescriptions 101

cautions: PRANCH should be the last command in a command statement con-
taining more than one comrand. If not, cornmands that fcllow BRANCH are
igncred.

BRANCH cannct ke used to initiate execution of a program.
progranming Notes: When the user wants to use internal symbols in the

INSTLOC operand, he must have requested an ISD when assemkling or com-
piling his program.

Examples:

1. The user has stopped execution of his prcgram (which has an isD).
He wants to resume execution at an instruction location labeled
with the internal syrbol LCCA. He issues the fcllewing command:
Usex: branch pgm.loca

The system resumes executicon at LOCA.

2. The user wants to alter the execution path of his program (PROG)
fromr lccation PTA to PTC. He issues the following command:

User: qualify prog
at pta; branch ptc
prog

The system passes control to PIC when executicn reaches PTA. (See
"program Control” in Section 3 of Part II1.)

BUILTIN Commrand

This command defines an object prograr (which was written in asserkler
language) that the user can invoke as a command. (See Section 4 cf Part
11.)

| o T
Operation|Cperand
1

- cnm

— T

| BUILTIN | NAM E=command name [,EXTNAME=bpkd macro namel
|

L

| {,PROLIB=data set name]
L

(yeap— e P

NAME .
designates the name of the command that calls the ckject program.

sEecified as: from one to eight characters, none of which can be
enbedded blanks, commas, semicolons, equal signs, or apostrophes.

EXTNAME .
is the external symbol assigned as the name of the PPKD macrc in-
struction (BUILTIN procedure key definer); see Assembler User Macro
Instructions. This name becones the external name of the called
program and is the 1ink Letween the command and the routine to be
called.

specified as: from one to eight alphameric characters, the first
of which must be alphaketic.

systen default: the value given in NAME is assumed.

PROLIB
specifies the data set in which the BUILTIN is stored.

102

specified as: the name of a VPAM data set. If this data set does
not exist, it will be created. The BUILTIN is stored in the SYSPRC
nenber of the data set.

Systen default: USERLIE.

programming Notes: If the user wants tc define operands for his com-
mand, he rust supply the coding within his module to handle the parame-
ter values supplied when the module is called. The BPKL macro instruc-
tion can pe supplied in the okject code as part of the FSECT or CEECIT
and must include the definitions of the expected parareters. The macro
instruction must also supply the names needed to provide linkage between
the module and the BUILTIN conmand that defines that rcdule. Refer to
Assembler User Macro Instructions for a further description.

The user can define operands and supply operand values when his user-
written command is issued.

Note: If the command BUILTIN is stored in a data set other than USER-
LIB, the corrand will nct ke availakle until the data set becomes USER-
LIB or until the BUILTIN command is put in USERLIB.

¢, ¢cA, and CB_Commands

These commands transfer input control from the user’s 1052 Printer-
Keyboard tc the attached 1056 Card Reader.

= S (e e - 1
|Operaticn|Cperand AJ
" ____________ - 1
Ic I |
L - —_ _— 1
B e == - - 1
|operation|Operand |
b - - -
IcA !

- L e _ I
1 2 R T e k|
|OperationjoOgerand |
b + :
|CB | 1
L —_—1 ——— — 1

Note: These commands have no operands.

Functional Description: The C, CA, and CB conrmands indicate to the sys-
tem that input will come from the 1056 Card Reader, rather than from the
attached 1052 Printer-Keyboard. Tc use these commands, the user places
his card deck in the 1056 Card Reader, and then he issues the appropri-
ate command (C, CA, or CB) from the printer-keykoard. The system reads
cards from the card reader until the user presses the ATTENTICN key cn
the terminal or until the system reads a K, KB, or KB card from the card
reader. The system then reads further input from the printer-keybocard.

These three commands also control the character set that is used cn card
input. The definitions are as follows:

Cc -- transfers control to the card reader: if keylkoard mode was KA,
CA will be card reader mode; if keyboard mode was KB, CB will be
card reader mode.

Ca -- transfers control to the card reader; card input is converted

from 1057 card-punch code to EBCDIC. This command can ke used
to change the ALFHABET operand without transferring control.

Part III: Command LCescriptions 103

CE —- transfers control to the card reader; card input is converted
from 029 card-punch code tc EBCLIC. This ccrmrand can ke used to
change the ALPBABET operand without transferring control.

Note: The CA and CB commands set the ALPHABET operand.

Example: The user wants to shift from keyboard input mcde to card read-
er input mode. ~

User: C
The system reads input from the attached 1056 Card Reader. If the ter-

minal mode was KB, card mode is CB; if the terminal mode was KA, card
mode is Ca.

CALL Command

This conrand invokes an okject module or a PL/1 procedure.

m T == - h }
|operaticn|Operand]
L —_—d 3
¥ T —— {
jCALL | (NAME=entry point namel [,module parameters] |
L L - - J
NAME

identifies the module to be invoked.

specified as: a module name Cr external entry pcint without off-
set. (FORTRAN users should use only main-progranm names; otherwise,
the results are unpredictakle. PL/I users should use only OPTIONS
(MAIN) procedure names.)

System default: the last module referenced by the system is
called.

module parameters
specifies the parameters associated with the ncdule keing called;
when a module expects parameters, all parameters must be specified,
including the commras representing null values, whether or not the
parameters are normrally defaultable. Parameters may only take
forns acceptable tc FCS. These are as fcllows:

e A ccrnmand variakle

A quoted string

¢ A decimal integer

A flocating-point numker
e A hexadecimal string
e A register

Specified as: the parameters, separated by commas, expected by the
rodule. A maximum of five parameters is allowed.

systen default: the module called does not expect parameters.

Functional Description: CALL invokes the dynaric lcader and passes to
it the nare of the mocule specified. If a module was not scpecified,
CALL passes control to the module most recently referenced by one of

104

these commands: PLI, ASM, LNK, FTN, LOAC, UNLOAD, CALL with a specified
module name, or an implicit call. Modules implicitly referenced Ly the
specified module are also loaded. The called module is invoked via

standard type-1 linkage. CALL passes control to a module that is alrea-
dy loaded. When the specified module cannot be found, a diagnostic mwes-

sage is issued.

When the called module receives control, register 1 contains a pointer
to a parameter list if parameters were entered. This list is preceded
by a word containing the numbter of parameters entered. Each word in the
parameter list contains a pointer to the actual parameter entered. Fach
parameter is preceded by a byte ccntaining the length of the pararneter,
unless the parameter is a command variable and a register. In this
case, no length is given. If a parameter is defaulted (denoted by two
sSuccessive commas), the corresponding pointer in the parameter list is
zero.

Caution: If the module called during execution of a dynamic staterment
has dynamic statements embedded in it, the results are unpredictakle.

Programming Notes: A module can be invoked by either the CALL cormand
or by a direct call (see kelow). A direct call follows the command sys-
tem syrbol-resclution process in which PROCDEFs take precedence over
modules. If a module and a PRCCLCEF have the sanme name, the PROCDEF is
invoked by a direct call. 1In this case, a CALL command must be used to
invoke the module.

CALL wmay be used to initiate execution of a module that is already
loaded. When you call a PL/I program tc execute, ycu must use the
module name.

cxamples:

1. The user wants to compile and execute program MYEPRG.
User: ftn myrrg
The syster compiles and stores myprg.
User: call
The syster invokes MYPRG.

2. The user wants to call module XYZ and to pass five parameters.
User: call xyz, parl,,.,parl

System: (invokes XY2Z and places a pointer tc the Farameter list
in register 1.

3. The user wants to call module XYZ and to pass one real-value
parareter.

Userx: call xyz, 3$$*#ax'

Systen: (invokes XYZ and places a pointer to the parameter list
in register 1.

Direct Call
When the user wants to load and execute an cbject rrcgram, he may do so
by entering the module nare and the operands expected as parameters by

the module. The system lcads the nodule ({(and any implicitly referenced
mciules) and passes control to the module.

Part I1I: Command Cescriptions 105

When a PROCLEF and a module have the same name, the PRCCDEF is called.
The CALL command invokes the module.

When the specified module or PROCDEF cannct be found, a diagnostic mes-
sage is issued.

When a mcdule expects parameters, all parameters must be specified, in-
cluding commas for null values. Parameters are passed to the module as
described akove.
Cauticn: A direct call is not permitted in a dynamic statement.
Examples:
1. Ioad and execute module AEC.
User: abc
The system invokes AEC.
2. ILoad mcdule ABC, pass parameters X, Y, and Z, and execute.

User: abc x,y,z

The system invokes RBEC and places a pointer tc the parameter list
in register 1.

CANCEL Command

This command eliminates a nonconversational task or jck.

T T

|Cperaticn|Cperand
i
§

| CANCEL |BSN=batch sequence number
L L

PR S

BSN .
identifies the nonconversaticnal task to be canceled.

Specified as: a one- to four-digit ESN assigned Ly the system when
the ncncconversaticnal task was established.

Functional Description: When a task is canceled during its execution,
the devices reserved for its use are released and the pages of storage
it was using are freed; the SYSOUT, although probakly incomplete, is
printed and includes a wessage indicating the reason for task
terrination.

A task that is canceled kefore it starts execution receives no explicit
sign of cancellation.

The user is informed if the task cannot be found.

Progranring Notes: The user may cancel any of his nonconversational
tasks, including those initiated through the kulk output commands.

Example: The user wants to cancel the ncnconversaticnal task (kefore
execution) identified as BSN 1214,

User: execute xyz

Systen: BSN = 1214

106

User: cancel Lksn=1214

Systen: CANCEL ACCEPTEL

CATALCG Cocnrand

This conrand creates a éatalog index for a generation data groug cr
renames a data set. ’

The CATALOG command, derending on the okjective, takes cne of two forms.

Form 1
L] L] L
|Operation|Cperand |
—: t - '
|CATALOG |LCSNAME=current data set name [,STATE={N|U}] [,ACC={R}|U}] |
| | {,NEWNAMF=new data set name) |
[- 1 - d
Form 2
r T ' - - M
|Operaticn|Operand |
4 J
- T 1
|CATALOG |GDG=generation data group name,GNO=nurker cf generations {
| {,ACTION={A|C}] [,ERASE={Y¥|N}] |
iy 4

DSNAME

identifies the data set. VAM data sets must be cataloged; plysical
sequential data sets must ke defined by a L[LEF command within the
current task or must be catalcged. The data set must reside on a
direct access device or on a ragnetic tape volure.

Specified as: a fully qualified data set name, which must nct have
an absclute generation numker appended.

STATE

ACC

specifies whether this is the updating of an existing catalog entry
or the creation of a new catalog entry.

Specified as:

N - new.
U - urdate.

Systen default: K.

specifies the access qualification for the data set.

Specified as:

R - read-only.
U - unlirited.

Lefault: U, if the catalog entry is new; otherwise, no chénge is
rnade to the access qualification.

NEWNAME

designates the new name for the data set.

Specified as: a fully qualified data set name.

Part III: Command Descriptions 107

Ad

Systenm default: the data set name is unchanged.

GDG
identifies a new generation data group.

Specified as: a generation data groupr narwe; the maximum numker of
characters is 26.

Note: This operand must ke given in keyword format.

GNO
indicates the number cf generations tc be maintained in the genera-
ticn data group.
Specified as: a one- to three-digit decimal number; the maxirum
value is 255.

ACTION
specifies the acticn to be taken when the GNC value Flus one
generation is being cataloged in the generation data groug.
Specified as:
A - all rrevious generations are to be removed fror catalog.
C - only the oldest generation is to ke removed.
Systen _default: C.

ERASE

designates the disposition of ocld generaticn data sets deleted from
the catalcg. Disposition applies tc private data sets only; puklic
data sets are always erased wken uncataloged.

Sgecified as:

Y - cld generation data sets to ke erased.
K - cld generation data sets to ke saved.

Systen default: N.

Functional Description: CATALOG offers these crticns:

1. Renare a VAM or physical seguential data set (Form 1)

2. Create or alter a catalog entry for a rhysical sequential data set
(Fcrrm 1))

3. Create a generation data grour (GDG) for VAM or physical sequential
data sets (Form 2)

When a data set is renamed, the system changes the data set labels on
the direct access volumes containing the data set.

When a physical sequential data set is cataloged, the system enters the
specified data set name into the user's catalog and assigns to the data
set tlre access qualificaticn specified by the user. If a data set name
is specified with a memker name, the data sét name, not the appended
nemker name, is cataloged.

when a GLG is created, the system enters the GLG name in the catalcg and
stores information pertaining to the maximum number of generations tc be
maintained, what is to happen when that nurber is exceeded, and tte dis-
position of the deleted generations.

108

A generation of a GDG can be catalcged with either an aksolute or rela-
tive generation numker. When the relative munker is used, the system
automatically assigns the Eroper aksolute generation number to the
geéneration and prints that number. Wwhen the user catalcgs a generation
to a GDG and exceeds the maximum number of generations maintained, the
System removes all generations or the oldest generaticn, depending on
the option selected by the user.

Note: All VAM data sets, both public and rrivate, are cataloged asuto-
matically Lty the system when they are created.

Caution: 7The user should not rename data sets that reside on magnetic
tape volumes; he may lose the data sets if he renames them in his cata-
log. CATALOG (Form 1) cannot ke used to update the entry for a GLG.

Programming Notes: To change the catalog entry for a GLG, use this
procedure:

1. Tenpcrarily catalog each memker as a Separate data set by renaming
it. For example:

catalog sampleds(0),u,,sampledsl
2. TCelete the GDG Ly using the DFLETE command.

3. Define a new GDG ky using the CaTALOG command, specifying the new
opticns desired.

4. Ad4 the temporarily cataloged memkers to the crc by renaming then
the original name. (Use the NEWNAME operand.)

Once a GDG has been cataloged, the user can add generations to the
group. When he creates a VAM data set and names it as a generaticn (by
arpending a generation number) of a GDG, the systenr catalogs the genera-
tion. Uncataloged physical sequential data sets can be added as genera-
tions with CATALOG (Forrm 1). Eoth VAM and rhysical sequential data sets
that are already cataloged can tecome generations of a GDG by renaming
them with CATALOG (Form 1).

A data set may be renamed as a generation of a generation data grcup by
using the NEWNAME operand (Form 1). The new name must te specified as a
generation level, for example, name{+1). If the data set reing renamed
is the first generation in the group, Form 2 of the CATAICG command rust
be entered first to create a catalog index for the generation data
group.

A new generaticn can Le cataloged with either an absolute or relative
géneration number; any cataloged generaticn can be referenced witk ei-
ther nunker. Wwhen using relative numbers, the user rmust know the actual
generation keing referenced. The newest generation has relative genera-
tion nurxker 0.

If a private VAM data set is deleted from the catalog, the EVV connrand,
not CATALOG, must be used to reenter the data set in the catalog.

A user who has been granted unlimited sharing access tc cne or more
levels of another user's catalog may add entries to that catalog. Wwhen
naming such entries, the user must include. qualifiers with the same
names that he assigned to his SHARF comrand fcr that catalcqg. Similar-
ly, if he wants to rename a shared data set, he may only renare the
SHARE qualifier as a part of the new name. The sharer cannot change the
owner's catalog.

when catalcging a new physical sequential data set, the user can use the
NEWKRAME operand to specify a seccnd nare, and that name is assigned to

Part III: Comrmand Lescriptions 109

the catalog entry. For example, a data set created under 0S or 0S/Vs
may have a name that is toc long; with NEWNAME, the user can renarne it
to suit TSS requirements.

-

Examples:

1.

110

The user wants to rename data set X.X2 to SIMUL.SK. To get the
catalcg entry changed, he enters:

User: catalog x.x2,u,newname=simul.sk

The user wants to catalog ASET as a new l0-generation data groug.
By defaults, he indicates that only the oldest generation is to be
removed and saved when the €leventh (GNO+1) generation is
cataloged.

User: catalog gnc=10,gdg=aset

The system creates a catalog index entry.

The user wants to catalog a new generaticn cf generation data group
ASET. It is assumed that the generation has been cataloged:

User: catalog xgz,u,.,aset{+1)

Note: The system automatically issues the aksclute generation num-
ber assigned to the generation. The user may refer to that genera-
tion ky aksolute generation numker or ky relative generation num-

ker. The relative generation nurber cf the nost recently cataloged
generaticn is always 0.

In a subsequent task, the user wants to catalog ancther new genera-
tion cf generation data group ASET. The new generation is assumed
to have Lkeen cataloged:

User: catalog abc,u,,aset (+1)

Note: The relative generation numker correlates with the next a-

vailable absolute generation number. The user rmust know the rela-
tionship ketween relative and aksolute generaticn numbers whenever
he uses relative generation numbers. However, he can always refer
to generations by relative generation numkers.

A user (user2) wants to add the previcusly defined physical sequen-
tial private data set DO.FILE.B4 from the owner's (userl) catalog.
Userl issues a PERMIT command to grant user2 unlimited access to
the entire catalog. User2, in a SHARE comrand, assigns the name DO
to this catalog; he catalogs the new data set with unlimited
access.

Userl: permit #*all,user2,u

User2: share do,userl ,ownerds=#all
ddef ddni,dsname=do. file.bld,disp=new
catalog do.file.kt,n,u

The system creates a catalog entry for DC.FILE.EB4 in the catalog
for user2.

CB Command

(See C, CA, and CB Conmands)

CLD_ccrnand

This command retrieves cne cr more LDEF ccnrands that have keen pre-
stored in a cataloged line data set and processes those commands.

Lo T b}

Cperaticn|Operand 1
i P i v |
|] T . L}
jcDbD |[DSNRAME=data set nare, |
| |{ data definition name| (data definition namel,...1)} |
| W -4 -— - d
DENAME

identifies the catalcged line data set that ccntains rrestcredé LLEF
ccnrards.

cpecified as: a fully qualified data set nare.

data definition name
identifies the particular CDEF commands to be retrieved in tte
referenced data set.

specified as: the data definition name or names of the LLCEF ccm-
nands tc ke retrieved. When two or more data definition names are
entered, they must ke enclose¢ in parentleses.

csysten default: all CLEF cormands in the referenced data set are
to ke retrieved.

Ncte: This operand must ke specified positionally.

Functional Description: The CLCL conrand retrieves cne cr more LDEF com-
mands from the specified data set and processes them. The user can thus
create a cataloged line data set of commonly used LCDEF commands and re-
fer to them by the CDD command, thereby relieving himself of direct LDEF
command entry. Each CDEF command that is executed is printed out in
full. »2Any LDEF cormands that contain invalid operands are displayed, as
are diagncstic messages issued ky DDEF.

Cauticns: Each data definition name must ke unique within the task.
The prestcred data set must contain CDEF commands only. A diagnostic
message is issued if data or if any other command appears in the data
set. These error lines are ignored and are nct printed. The conversa-
tional user has the option of either skipping the erroneous records in
the data set or canceling the CIL conmand; a nonccnversational task is
terninated.

Progranring Notes: The user can retrieve and enter all prestored DDEF
comrands in the data set Lky omitting the data definition name operand.
1f the user wants to retrieve a selected set of these commands, he must
supply the data definition names of the selected DDEF ccmmands when he
enters the CDD command.

Exarples:

1. The user wants to execute three DDEF commands that are stored in
the cataloged line data set PAYROLL.LE. The three LCEF commands,
with data definition names NOW1, NOW2, and NCW3, are assumed to be
in the data set.

Part III: Conrand Descriptions 111

User: cdd payroll.dd.(nowl.now2,now3)

The system processes the DDEF commands in the data set, and then
prints information similar to the following:

DDEF NOWl,VI,DSNAME=WINDUP,DISP=CLD
DDEF NOW2,VI,DSNAME=GOONNU,DISP=CLD
DDEF NOW3,VS,DSNAME=STAR,DISP=CLD

The user wants to execute a DDEF command with DDNAME JBACCT in data
set PAYROLL.P.

User: cdd payroll.p,jbacct

The system processes the specified DDEF cormand and then prints in-
formation similar to the following:

DDEF JBACCT,PS,DSNAME=LEAD.T,DCB=(DEN=2),
UNIT=(TA,9),VOLUME=(,0&3591),LAEEL=(2,SL,RETPD=2),
DISP=OLD

CDs command

This

command copies a data set or specified members of a partitioned

data set.

[3 L
lOperation|Operand
[I}

f—
jcps

e e S v

+

| DSNAME1l=input data set namel(member name(,...1)1,
| DSNRME2=CcOpY data set namel (member name)]
t[,ERASE={Y|N}] [,ccpyBASE=first line nunber,

| COPYINCR=increment] { ,REPLACE={R|I}]

|

hee o e e e ol e

DSNAMEL

jdentifies the data set to be copied; VAM data sets must be cata-
loged; physical sequential data sets must already be defined by a
DDEF command within the current task or must be cataloged.

specified as: a fully gualified data set name and (optionally)
member names of a VPAM data set. When specified, the member names
are separated by commas and enclosed in parentheses, and they imme-
diately follow the VPAM data set name.

Note: A PS data set can only ke copied to another PS data set.

DSNAME2

specifies the data set name to be assigned to the copy of the data
set. The data set can be already defined by a CDEF command within
the current task. otherwise, CDS defines it with the same data set
organization as DSNAMEL.

specified as: a fully qualified data set name and (optionally) a
member name must be of a VPAM data set. The memker name nmust be
enclosed in parentheses and must immediately follow the VPAM data
set name. When multiple members of the input data set are speci-
fied, the data set copy must be a partitioned data set with no mem-
ber names specified. If not, the CDS command is canceled and the
user receives a diagnostic message.

Note: A PS data set can only ke copied to another PS data set.

ERASE

112

specifies whether the original data set or data set member residing
on direct access storage is to be erased after it has been copied.

specified as: Y - data set to be erased.
N - data set to be saved.

system default: N.

Note: If the user shares, but does not own, the data set being
copied, he cannot specify its erasure unless his access is unlimit-
ed; if he has read-only access, this operand is ignored. 1If the
data set being copied is physical sequential, this operand is
ignored.

COPYBASE)
identifies the starting line number of the data set copy when

renunbering is desired.

Specified as: from one to seven decimal digits. An all-zero
starting line number is invalid.

System default: no renumbering occurs; COPYINCR must also be
defaulted.

COPYINCR
designates the value by which line numbers in the data set copy are

to be incremented when renumbering.

specified as: from one to seven decimal digits. An all-zero in-
crement is invalid.

System default: 100, when renumbering.

Note: COPYBASE and CCPYINCR ray only be specified for line data
set copies. When COPYBASE and COPYINCR are specified for a line
data set copy, the first seven bytes of each record in the copy are
the line mumbers, and the eighth byte is the origin character.
Thus, when a VSAM data set is the source for a line data set copy,
the first eight bytes of each source record are overlaid with line
-numbers. When a line data set is source to a line data set copy,
the source record line numkers are overlaid with the new line
numbers.

REPLACE
allows the user to specify that duplicate merbers are replacerments
or are to be ignored with a suitable diagnostic.

Specified as:

R - replace an existing member in the data set copy with a member
from the input data set.

I - ignore any memker in the input data set that is duplicated in
the data set copy.

Systenr default: R.

Note: When COPYBASE and COPYINCR are specified, this operand is
ignored.

Functional Description: The CDS command has two functions. The first
function is to merge or overlay members of one partitioned data set with
members of another partitioned data set. (The characteristcis of the
data sets are presented in Takle 16.) This is known as member process-
ing. The user specifies the function with the following restrictions:

1. DSNAME1l and DSNAME2 must be names of virtual partitioned data sets.
2. DSNAMEZ2 has no member name specified with it.

3. DSNAMEl1l may have one member name, a list of member names, or no
rember names specified with it.

Member processing causes the specified members of DSNAME1l (if no member
name is specified, all members are processed) tc be ccpied into DSNAME2

Part IIT: Conrand LCescriptions 113

with duplicate members handled according to the specification for the
REPLACE operand. The CCPYBASE and COPYINCR parameters have no meaning
in this type of processing.

when CDS does member processing it moves member name aliases and user
data along with the data and the member name. The CDS command can be
used to copy a program likrary; all the aliases are preserved. However,
if an alias for a menmber of the input data set is an alias for a member
that is not being replaced in the output data set, the copy of that
input member is not made.

Table 16. Characteristics of data sets that are used by CDS

— T o 1
| Data Set | |
i Organization] | Definition Requirements i
- v] Residence r T i
| source | Copy | source and Copyl| Source] Copy {
F 1 + t + 1
|PS |PS |On either |Must be cata-|Can be defined |
1] | direct access |loged, or de-|by previous DDEF i
| | |or magnetic |fined by pre-|in current task i
{ l | tape volume |vious CDEF in| |
| | | | current task | |
k + { t 1 |
VI jvI |Must be stored |[Must be cata-| i
{vs jvs |on direct |loged | |
} VI lvs |access volume | | |
|vs V1 | i | |
F + % t t 4
| vs |VS or VI |Source data set|Must be cata-|Can ke defined by |
| |member of|and VPAM data |loged {previous DDEF in |
| |vPAM data|set receiving | |current task, un- |
{ jset | member must be | | less new member of |
b + jon direct | |existing cataloged |
j VI |VS or VI |access volumes | jdata set |
| | member ofj | i |
a |VPAM data| | | 1
| |set 1 | n 1
b t + t t 4
| VS member | VS |[vPAM data set |VPAM data |can ke defined by a |
jof vPAM |VI | provides source|set must be |previous DDEF in the|
| data set | land copy data |cataloged jcurrent task
} + jset, stored on | |
|VI member|VI | direct access | |
jof VPAM |VS | volumes |
jdata set | i |

i

— e

|

|

]

|

|

k + % -

| VS member |VS or VI |{vPAM data sets |VPAM data set must be cataloged {

jof VPAM | memberxr of|stored on | |

| data set |VPAM data|direct access | |

i |set | volumes | |

i { 3 | '
1 3 1 1

| VI member | VS or Vi | | |

jof VPAM jmember of| | i

| data set |VPAM data| | |

| |set { i i

L i L L J

Whenever a member is not copied, because of a duplicated alias or be-
cause REPLACE=I, CDS issues a message that contains the name of the mew-
ber and the reason the membexr was not copied.

114

The second function is to copy any data set or member of a data set and
make it another data set or member of another data set. (See Table 16.)
This function has the following restrictions:

1. DSNAME1l and DSNAME2 may be the names of any type of data set.

2. If DSNAME1l or DSNAME2 are virtual partitioned data sets, only one
member name must be specified.

The REPLACE operand has no meaning for this function.

When a starting line number is specified, the lines of the output data
set are numbered. The specified or default increment value is used, and
the line numbering within the orjginal data set is not affected.

Cautions: If this function is used to create a member of a virtual par-
titioned data set, no user data or aliases are provided. The CDS com-
mand is restricted to data sets on direct access or magnetic tape
volumes. CDS cannot be used to change record formats.

A copy of a member of a partitioned data set may have VISAM or VSAM
organization.

The user may specify a VISAM organization for a data set copy even
though the original data set organization is VSAM. Each record of the
data set must contain a key. The user must use a LDEF command to speci-
fy the new data set organization (Vs), the key length (KEYLEN), the pad-
ding (PAD), and the key position (RKP). If the user fails to provide
these opticnal values (except PAD), ard his task is conversational, he
is prompted for the values. If the task is nonconversational, no copy
is made. The PAD operand is optional; and if it is omitted, it is
assumed to be zero.

Examples:
1. The user wants to copy the cataloged VISAM data set FIRSTL, which
will be a VSAM data set named TWIN.FIRSTL. He does not want to
erase the original data set. He enters the following command:

User: ddef ddnz,vs,dsname=twin.firstl
cds firstl ,twin. firstl

2. The user wants to copy three members, A, B, and C, from LIB1l, a
VPAM data set, into LIB2, a VPAM data set that has members named A
and C. He wishes to replace members A and C and add B. Both data
sets are cataloged. The command he enters is:

Usex: "eds libl(a,b,c),lib2,,,,r
The system copies members A, B, and C with aliases and user data.

3. The user wants to copy a VISAM member A from LIB1l, a VPAM data set,
into LIB2, also a VPAM data set, with the name A maintained for the
new member in LIB2. He also wishes to renumber A with a base of 50
and an increment of 10. He enters the following cammand:

User: cds 1ibl(A),1lib2(A),,copybase=50,copyincr=10

The system copies member A with all aliases and user data lost.

Part III: Command Cescriptioms 115

4. The user wants to merge the VPAM data sets LIB1 and LIB2. Be
enters:

User: cds 1ib1,1ib2,,,,i

The system copies all members from LIBl into LIB2 unless a dupli-
cate member name is found in 1IB2, in which case that member is
ignored. All aliases and user data are ocopied.

5. The user wants to copy VSAM data set SEQ.CATA, and he wants to make
it a VIsaM data set named VI.DATA. He wants to use a unique man
mumber as a key in the fourth through sixth bytes of each record.
The original data set contains fixed-length records, 512 bytes
long. He enters the following commands:

User: ddef dd2,vi,dsname=vi.data,dcb=(recfm=f,1rec1=512,-
rkp=3,keylen=3,PAD=10)
cds seg.data,vi.data

The system copies the data set.

6. The user has a 9-track tape {volume serial number 000126) that con-
tains BSAM data sets. He wants to copy the third file on the tape
onto a scratch tape. The serial number of the scratch tape will be
supplied to the system by the operator.

Usexr: ddef tapel,ps,dsname=source.run,disp=old,unit=(ta,9),-
volume=(,000126),1ahel=3
ddef tape2,ps,dsname=source.copy,disp=new,unit=(ta,9),-
volume=(private)
cds source.run,source.copy

The system copies the data set.

CHGPASS Command

This command will change add, or remove your password.

L - T -)
|Operation joperand |
fom—-—m—- e o =
| CHGPASS 1ENEWPASWD=password3 \
e — L : _ — 1
NEWPASWD

specifies your new password

specified as: from one to eight alphameric or special characters
(except tab, comma, kackspace, percent sign, equal sign, and left
and right parentheses).

system default: if you do not enter the operand, the system over
types a line that is a prompt for you to enter a password.

Functional Description: CHGPASS adds, changes, OX removes your
password.

If you enter the command without the operand, the system prints out a
message that prompts you for the new password and prints an overtyped
area in which you enter the new password. After you enter the new pass-
word, the system validates it and prompts you for your current password.
you enter your current password in an overtyped area. If the current
password is valid, the new password becomes your current password.

116

If you enter the operand of this command, the specified password becomes
your new password after you have successfully entered your current

password.

If you wish to nullify a previous password, but do not wish to replace
it, enter the command with no operand. When you receive the over typed
line, press the RETURN key on your terminal.

Examples:
1. You wish to enter a new password as an operand:
User: chgpass passw@d2

The system prompts you to enter your current password by printing a
message and an overtyped line.

User: oldpass

The system replaces your old password -- oldpass -- with the new
password -- passwd2.

2. You wish to enter a new password with password security:
User: chgpass

The system prompts you to enter your new password and prints an
overtyped line.

User: passwd3

The system prompts you for your current password and prints an
overtyped line.

User: oldpass

3. You wish to nullify your password, but you do not wish to replace
it with a new password. You enter:

User: chgpass

The system prompts you for your new password and prints an over-
typed line.

User: (presses the RETURN key to default the password)

The system prompts you for your current password and prints an
overtyped line.

User: oldpass

CLOSE Command

This command closes a user's data sets when the normal rath of process-
ing is interrupted, either ky the system or by the user, and the data
set cannot be closed at the program level.

3 T b
|Operation |Operand |
L 4 d
r L) R]
|CLOSE | IDSNAME=data set namel [,TYPE=T] i
| | [,CDNAME=data definition name) |
- 4 J

Part III: Command Descriptions 117

DSNAME
the name of the data set to be closed.

specified as: the fully or partially qualified name of the data
set or data sets to ke closed.

system _default: All user data sets, with the exception of USERLIB,
are closed if a DDNAME parameter is not specified.

TYPE
a temporary close (TYPE=T) is to be performed for the user"s data

sets.

specified as: T

system default: A normal close is performed.

DDNAME
the data definition name of the data set to be closed or the lead-
ing characters of a data definition namre that are common to a group
of data sets that are to ke closed.

specified as: from one to eight alphameric characters, the first
of which is alphabetic, or a quoted string. 1If the quoted string
is not eight characters, it is padded to that length with blanks.

system default: The data set specified by a fully qualified data
set name, or all the data sets identified by a partially qualified
name, or all user data sets except USERLIE when DSNAME is defaulted
are closed.

Functional Description: The systew looks for the data sets you speci-

fied in the command. If a data set is found and it is a user data set

that is not a JOBLIB, it is closed. If the data set cannot be closed,

the system issues a message. The system issues a message, also, if the
data set cannot be found.

This command should be used when your task or program is abnormally ter-
minated, either by you or by the system. If you are not sure that data
sets have been closed, issue the CIOSE command for your data sets. Con-
trol is returned to you after CLOSE has been executed; that is, CICSE
does not terminate abnormally.

Programming Notes: This command closes data sets belonging to a user;
it cannot be used to close system data sets.

The default of data set name does not cause the user's USERLIB to be
closed; USERLIB is closed only when explicitly specified. If both DS NAME

and DDNAME are specified and the data set name is partially qualified,
only the data set with the specified data definition name is closed.

If the specified data set is a job library (JORLIB), all DCBs are closed
except the system DCB that makes the data set a JOBLIB (USERLIB is de-
fined as a JOBLIB). The RELEASE command can be used to close this DCB
and release the JOBLIB.

A group of data sets can ke closed with the DLNAME operand by specifying
the leading characters of the data definition name that are common to
the group (for example, FT for FORTRAN data sets).

caution: TYPE=T must not be specified for duplexed VAM data sets.

The following conditions occur when the CLOSE command is used and TYPE=T

has been specified. (1) PROCDEFs cannot be executed after the conwand
has been executed for USERLIB, and messages in the user's SYSMLF cannot

118

be issued until the user issues another LOGON for the task. (2) The
command clocses all open members of a partitioned data set. Therefore,
issue a FIND macro instruction for the partitioned data set before con-
tinuing processing from a program, or reissue the ELCIT command before
contimiing processing with the text-editing commands.

COBOL Command

This command will invoke the 0OS/VS COBOL program product using the Pro-
gram Product Language Interface.

L 8 T 1
|Operation|Operand i
t + §
| COBOL | NAME=modulename [,0SCPTS=(optl,opt2,...)] |
{ |1, SOURCEDS=sourcedsname] |
L 1 -_— H
NAME
identifies the name ky which the okject program will be known to
TSS. It consists of one to eight alphameric characters, the first
of which is alphabetic. If the SOURCEDS option is not specified,
there must exist a dataset called SOURCE.name which is assumed to
be the source program to be compiled.
OSOPTS .
specifies a list of 0S/VS options to be in effect during the
compi lation.
Significant Significant Significant
Option Characters Option Characters Option Characters
LINECNT CNT XREF XRE VERB VER
SEQ SEQ BATCH BAT ZWE ZWB
FLAGE(W) LAG,LAGW NAME NAM ENDJOB END
SIZE S1Z SXREF SXR TEST TES
BUF BUF STATE STA LVL LVL
SOURCE Sou TERM TER ADV ADV
DECK DEC NUM NUM COUNT - QOU
LOAD LOA DUMP DUM
SPACE ACE LIB LIB LSTONLY/LSTCOMP LSTO/LSTC
DMAP DMA SYMDMP SYM LCOL1/1LCOL2 CL1/CL2
PMAP PMA OPTIMIZE OPT FDECK FDE
SUPMAP sSup SYNTAX SYN CDECK CDE
CLIST CLI CSYNTAX CSY L132/L120 L13/L12
TRUNC TRU RESIDENT RES VB SUM VBS
APOST APO DYRNAM DYN " VBREF VBR
QUOTE QUO SYSx SYS

The compiler options are as follows:
[SIZE=YYYYYYY] [,BUF=YYYYYY] [,SOURCE|NCSOURCE] [,DMAP|NOIMAP]
{,PMAP| NOPMAP] [,SUPMAP|NCSUPMAP] [,LOAD|NOLOAD]} {,DECK|NODECK])

{,SEQ|NOSEQ] [,LINECNT=nn] [,TRUNC|NOTRUNC] [,CLIST}NOCLIST)

{,FLAGW|FLAGE] [,QUOTE]APOST] [,SPACEL|SPACE2 |SPACE3] [, STATE|NOSTATE]
{,XREF| NOXREF1 [,SXREF | NOSXREF] [,NAME|NONAME] [, BATCHXNOEATCH]

{, TERM| NOTERM] [, PRINT | NOPRINT((* |dsname)}] (,SYMDMP|NOSYMIMP)

Part III: Cormmand Descriptions 119

{,OPTIMI ZE | NOOPTIMI ZE] [,SYNTAX| NOSYNTAX] [,LVL=A|E|C|D]
{,TEST|NOTEST] ([,ENDJOB|NOENDJOB} [,CSYNTAX | NOC SYNTAX]

[,RESIDENT[NORESIDENT] [,DYNAM[NODYNAM] [,VERB| NOVERB] {, ZWB | NOZWB]

{,SYST|SYsx)* [,ADV|NOADV] [, COUNT | NOCOUNT] [,CUME | NODUMP]

[,LSTONLYlLSTCOMPiNOLST]2 {,LCCL1 |ICCL2])? { ,FCECK | NOFDECK]12
{ ,CDECK | NODECK] {L132]1120] [,VBSUM]NOVBSUM] {,VBREF | NOVBREF]

1Tf the information specified contains any special characters, it
must ke delimited by single quotation marks instead of parentheses.
1f the only special character contained in the value is a conma,
the value may be enclosed in parentheses oOr quctation marks. The
maximum number of characters allowed between the delimiting quota-
tion marks or parentheses is 100.

arhese options are used to request the lister feature.

additional information is availakle in Appendix J, and the 0S/VS COBOL
programmer's Guide.

SOURCEDS
specifies the name of the input dataset to be compiled.

CONTEXT Cormand

This comrmand replaces a string of characters within one line, a range of
lines, or all lines in a region or in a data set with another character

string.

T - 1
lOperat10n|Operand |
b ¥ - 4
| CONTEXT | (N1=starting position)[,N2=ending gositienl,]
| | ,STRINGl=search string(,STRING2=r eplacement stringl i
L —i 3
N1

jdentifies the line or first line of a range of lines in the cur-
rent region or data set that is to be searched for STRING1.

specified as: a one- to seven-digit line number in decimal that
may be absolute or relative.

LAST - last line in the current region.

Note: When the user wants to start the search at a character posi-
Tion other than the first character position of the specified line,
he can specify the starting position as an absolute one- to four-
digit decimal number enclosed in parentheses and imrmediately fol-

lowing tne line number. The first character of text is position 1.

system default: When N2 is specified, the value of the CLP is
assumed; otherwise, the entire data set or region is searched from
the beginning.

N2
identifies the last of a range of lines in the current region or
data set that is to ke searched for STRINGI.

120

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

IAST - last line in the current region.

Note: Wwhen the user wants to ‘end the search at any character posi-
tion other than the last character position of the specified line,
he can specify the ending position as an absolute one- to four-
digit decimal mumber enclosed in parentheses and immediately fol-
lowing the line number. This ending character is included in
correction processing. The first character of text is position 1.

system default: When N1 is specified, it is the only line
searched; otherwise, the entire data set or region is searched from
the beginning.

STRING1
designates the character string (called search argument) that is to
be searched for within the range N1 to N2. The character string
mist be located in one line or it will not be found.

Specified as: a normal or gquoted string; it may not be null.

STRING2
designates the character string that is to replace all occurrences
of STRING1 in the range N1 to N2.

Specified as: A normal or gquoted string.

Ssystem default: Each occurrence of STRING1l is deleted.

Functional Description: Wherever STRING1 is found, the system replaces
it with STRING2. STRING1l and STRING2 need not be the same length. 1If
the replacement string is longer than the search string, the line is ex-
tended to make room for the replacement string; if the replacement str-
ing is shorter, the line is processed so that no extra spaces remain in
the line after the command is executed.

If STRING1 is not specified, the user is warned, and the command is
ignored. If STRING1 and STRING2Z are enclosed in apostrophes, the apos-
trophes are stripped off Lefore execution of CONTEXT. After execution,
the CLP is set to the line following the last line processed (N2); the
user is prompted for another command. If N2 is the last line in the
data set or region, CLP is®* set to N2 plus the value of INCR.

Caution: A language-processing command (ECIT, PROCLCEF, or PLI) must be
invoked before the CONTEXT command is issued.

If you use CONTEXT or CCRRECT to update a line of a source programn that
was entered via punched cards, you must maintain punched-card format.

Programming Notes: The CCNTEXT command can be used tc replace symbols
in source language modules. In this use, STRING1l is the original sym-
bol, and STRING2 is its replacement. This command can be used for any
source language data set if the data set is a region or line data set.

Since CONTEXT does not display the lines in which string replacement has
occurred, the user may want to use the LIST comrand fcllowing CONTEXT.

Examples: A data set contains 20 lines, numbered from 100 through 2000.
1. The user wants to replace the string ABCLEF with UVWXYZ. He

enters:

Part III: Command Descriptions 121

Uger: context ,,akcdef,uvuxyz

2. The user wants to replace occurrences of ABCDEF that appear in
lines 500 through 1000. He enters:

User: context 500,1000,akcdef,uvwxyz

The system searches lines 500 through 1000, yeplacing ABCDEF with
UVWXYZ, and issues:

3. The user wants to replace ABCLEF only in the first 50 character
positions of line 1200 (assume CLP=1000). He enters:

Ugser: context +2,+2(50),akcdef,uvwxyz

4. The user wants to delete ABCDEF. He specifies ap explicit null
string in the command (assume CLP=1000). BHe enters:

User: context -3,last,akcdef
System: _

5. The user wants to replace in a region the stripng JOHN'S HOUSE with
another string. He enters:

Ugser: context 0,last,'john’'s house', '*!3/#§°

The system searches entire region, replaces JOHEN'S HOUSE with *!a/
#§, and issues:

CORRECT Command

This command changes characters or inserts characters in one or more
lines of the current region or data set.

09eration|09erand

-

"|CORRECT | (Nl=starting linel([,N2=ending linell, scox,=starting column]
10, CORMARK-replacement correction charactera][CHAR={C|M|H}]

L 4

N1

identifies the line or first line of a range of lines to be

corrected.

Specified as: a one- to seven-digit decimal line number that may

be absolute or relative.

LAST - last line in the current region.

System defanlt: The value of CLP within the region.
N2

identifies the line or last line of a range of lines to be
corrected.

Specified as: a one- to seven-digit decimal lina number that may
be absolute or relative.

LAST - last line in the current region.

122

SCOL

System default: N1 is assumed if specified; otherwise, the value
of CLP within the region is assumed.

specifies the character position within the text of each line, from
N1 to N2, at which correction is to begin. All characters tc the
left of this position are ignored. The line to be corrected is
displayed starting at the SCOL position, and if the logical line
length exceeds the physical line length capacity of the output ter-
minal, only the physical line containing the character specified by
SCOL is displayed.

Note: The first character position of data is position 1.

Specified as: from one to four decimal digits.

System default: position 1.

CORMARK

identifies the correction characters that are to replace the stand-
ard correction characters. The standard correction characters
(*$a%#) are replaced from the left by a direct substitution. Any
that are not entered are assumed to be unchanged. All characters
up to the one to ke changed must be entered.

Specified as: a normal or guoted string.

System default: The standard correction character.

The standard correction characters, or the corresponding replacement
correction characters, and their functions, are:

*

$

CHAR

== durlicates the character directly above the * and all characters
to the right of that character -- until either the next correc-
ticn character or the end of line is encountered.

== duplicates the character directly above the $. Aall replacement
characters on the correction line are substituted for the corre-
sponding characters on the original line until either the next
correction character or end of the original line is encountered.

-- duplicates the character directly above the a. If the 3 is im-
mediately followed by another correction character or by the end
of the line, characters from the replacement line are inserted
immediately after the character that is above the da. The rest
of the line is moved to the right to make room for the inser-
tion. If the 3 is not immediately followed by another correc-
tion character or by the end of the line the number of spaces
between the a and the next correction character (or the end of
the line, if no other correction character follows the 3) mark
the characters in the original line that are replaced by the
characters in the replacement line.

—-= removes the character directly above the %. All characters to
the right of the character above the % are shifted left one po-
sition, and all other characters to the right of that character
are duplicated until either the next correction character or the
end of line is encountered.

-- functions as does the 3, except that hexadecimal characters are
inserted and this symbol cannot be the last character in the
line before the carriage return. (See "Caution,* below.)

indicates the type of input expected.

Specified as:

Part III: Conmand Descriptions 123

character (the line is displayed in character notation)
hexadecimal (the line is displayed in hexadecimal)

mixed (functions the same as CHAR = H for input and display of
the line)

z2ma
|

System default: C.

Note: If CHAR=H and the user enters nonhexadecimal data, the CORRECT
command is canceled. Also, if CHAR=H, hexadecimal data is expected fol-
lowing the 8 and the # characters, and the § character may input hexade-
cimal data in the correction line. If CHAR=C the # character can be
used to enter hexadecimal replacement characters.

Functional Description: When one line is specified to be corrected, the
system disglays that line. You enter a correction line (a line that
contains the correction or the correction characters, or both). Until
the system detects a correction character in the correction line, it
replaces the characters in the original line with those given in the
correction line. The system prompts you for a replacement line if the @
or the # characters are used to indicate replacement. If LIMEN is
defaulted to I, the system prompts with a message for you to enter the
replacement line; otherwise, only the keyboard is unlocked to indicate
that the replacement line can be entered.

an end of line in a field marked by *, §, or % within the correction
line causes the remainder of the original line to be duplicated. An end
of line in a field marked by $ terminates the line.

Following execution of the CORRECT command, the CLP is set to the next
line after N2 (or N2 plus the value of INCR if N2 is the last line), and
the user is prompted for a command.

Caution: Unprintable EBCDIC characters in the text appear as spaces
when the line to be corrected is displayed unless CHAR=M or CHAR=H is
specified. A language-processing command (EDIT, PROCDEF, or PLI) must
be invoked before the command is entered.

You can make a record longer by inserting data (use the a correction .
character, for example). You cannot add data to the end of a record.
If you do, the system cancels the operation and prints a message.

If the # correction character is the last character in the line before
the carriage return, the line is canceled.

If you use CONTEXT or CCRRECT to update a line from a source data set
that was entered via punched cards, you must maintain punch-card forrat
on that line. (Column 72 is still used for the continuation character.)

Examples: In the following examples, the user enters the CORRECT cor~
mand, specifying the line to ke corrected. The system displays the
line, as it exists. The user enters the correction line (the third line
in the examples) and a replacement line (fifth line), if one is
required.

1. User: correct 400
Systenm: STEMS3660
User: a* § *%
Systerm: ENTER REPLACEMENT LINE
User: ys

Sys,User: list 400
System: 0000400 SYSTEM 360
CLP SET TC 0000500

In the example the & in the correction line cauced the ¥YS fror the
replacement line to be inserted after the character that appears

124

above the 8 in the original line; the § followed by a blank caused
the blank to replace the character above it (S); and the X caused
the character above it (6) to be deleted and all following charac-
ters to be shifted to the left. The characters above the ¢ were
duplicated until the next correction character was found.

User: correct 104
Systemn: COMPVTE X1
User: * Sus

Sys,User: list 104
System: 0000104 COMPUTE X1

CLP SET TO 0000105

In the example the $ followed by the U caused the U to replace the
character above the §.

User: correct 27
System: CONTNUE

User: * 3
System: ENTER REPLACEMENT LINE
User: i

i
Sys,User: list 27
System: 0000027 CONTINUE

CLP SET TO 0000028

Again, in this example the a8 is used to indicate an insertjon after
the T.

User: correct 15

System: XYZ 1345 CC MPTE X
User: abca * X3

System: ENTER REPLACEMENT LINE
User: 1 3,4,5

Sys,User: list 15
System: 0000015 ABC L 3,4,5 COMPUTE X

CLP SET TO 0000016

In the following example, the user has a data set named PARTS.
Positions 15-18 of lines 300-800 contain a year that is incorrect.
He issues the following Sequence of commands to get the errors
corrected.

User: list 300(15),800(18)
System: 1966

1966

1956

1966

1866

k866

CLP SET TO 0000900
User: correct 300,800

(Note: the system does not print out any data. The keyboard is
unlocked and the user enters his correction, using the conventions
descr ibed above.)

User: * $1968+*

Part III: Cormand Descriptions 125

DATA Command

This command creates either a line data set or a VSAM data set.

r T : '
jOperation|Operand |
L ;]
T T B
| DATA |DSNAME=data set name |
{ | +RTYPE={I|LINE|FTN{|{CARD|S} |
| | [(,DBASE=first line numker) [,DINCR=increment] |
L L 4
DSNAME

jdentifies a data set or a menber of a partiticned data set. The

data set must be defined within the current task by a DDEF command,

unless it is to reside on public storage.

Specified as: a fully qualified data set name and (optionally) the

member name of a VPAM data set. When specified, the member name

must ke enclosed in parentheses and must immediately follow the

VPAM data set name.

RTYPE

indicates the organization of the data set specified.

Specified as:

I - line data set organization is required.

LINE - same as above.

FTN - line data set organization is regquired and the input is a
FORTRAN source data set in punch-card forrat. The card for-
mat is converted to keykoard format with keyboard continua-
tion conventions as it is placed into the data set. The
resultant data set may ke updated from a terminal without
any special consideration being required for multicard sta-
tements. Trailing blanks are stripped from statements that
are not continued.

CARD - a VSAM fixed-length data set is created (no line numbering).
The record length is 80 characters. Normally, this option
is specified when the user is creating a data set for FOR-
TRAN data from card input. It may also be specified to
build a data set from the keyboard conversationally. 1In
this case, leading blanks are not stripped off, and all
input goes into the data set in the form it is entered from
the terminal. If the line entered is less than 80 charac-
texrs, it is padded with blanks to create a record that is 80
characters long. If the record entered is greater than 80
characters, it is truncated to 80 characters.

s - a VSAM variable-length data set is required (this generates

~a record preceded by a four-byte length field) and a one-
byte origin field (keyboard/card reader indicator).

System default: S.

DBASE

126

jidentifies the starting line number of the line data set being
created.

Specified as: from three to seven decimal digits, the last two of
which must be zeros. An all-zero starting line number is invalid.
{see "Note®™ under DINCR.)

System default: 100.

DINCR .
specifies the value by which the line mumbers in the data set are
to be incremented.

Specified as: from three to seven decimal digits, the last two of
which must be zeros. Ban all-zero increment is invalid.

System default: 100.

Note: The specification of DBASE and DINCR is invalid for a
sequential data set (indicated by defaulting RTYPE).

Functional Description: Either a line data set is selected or a VsaM
data set is created. The user can modify, correct, insert, and delete
lines only in a line data set.

If the user's task is conversational and LINENO=Y, the CATA command
prompts for entry of data. 1If indexing was specified, the system re-
quests each line by issuing the current line number; if indexing was not
specified, the system prompts for each line by issuing a pound sign (#).
When the user does one of the following,

1. Enters XE

2. Enters a single break character as the first character of a line
3. Presses the ATTENTION key
the data set is closed and command mode resumed. (If the ATTENTION key
is pressed, the data on the current line is not entered into the data
set.) 1In each case, the system prompts the user for his next comrand.
The user may then reopen the data set and continue to build it or a mem-
ber of it by issuing another DATA command.

If an old data set is specified, the user is prompted with the first
line number after the end of the data set. If the old data set is
VISAM, the user is prompted with the last line in the data set plus the
increment value. If the user specifies his own base value, he is pro-
mpted with the line number specified.

Lines being entered for a line data set can be modified, corrected, or
deleted, and new lines can ke inserted by following the conventions
listed below. (See also "Language Processing® in Section 3 of Part II.)
1. To modify or correct a line of a line data set, enter:
%line number,data
where:
line number
identifies the line to be replaced by a modified or correct
line.

data
is the replacement line of is data.

2. To insert a new line into a line data set, enter:
%line mimber,data
where:
line number

identifies the new line to be inserted. It may be any one- to

Part III: Comrand Cescriptions 127

seven-digit integer, the value of which specifies the location
of the new line within the data set. This value must not ex-
ceed the last existing line number.

3. To delete a line or a series of lines from a line data set, enter:
%D,line numberl,last line number]}
where:

line number
identifies the last line to be deleted. If a sequence of
lines is being deleted, "last line number® must be higher in
value than "line number.®

Cautions: When other DATA and MODIFY ccrmmands are entered as part of
the data set, they must be preceded by multiple break characters frecause
the systemw closes the data set and immediately executes any command fol-
lowing a single break character. The use of multiple break characters
in the data mode is the same as described in Section 4 of Part II. The
number of break characters used depends upon the level of nesting.

Programming Notes: The maximum line length is 120 characters of text
{not counting the line number) for either a line data set or a VSAM data
set with variable record length. For a VSAM data set with fixed-length
records, the maximum record length is 128 characters. When records are
being entered via the IBM 1056 Card Reader with the AUTO EOB switch on,
the maximum record length is 80 characters; and with the switch off, the
maximum length is 79.

When a line is being continued the continuation character (a hyphen) is
not included in the record placed in the data set. Each line that con-
tinues the statement initiated in a preceding line is accepted as if it
were a new and independent line that forms a complete statement by
itseif.

DATA normally puts a new data set on a public volume. If a private vol-
ume is desired, a DDEF command must be issued for a data set before the
DATA command is issued.

Examples:

1. The user is attempting to construct a line data set named ROVER1.

User: data roverl,line,100,200
Sys,User: 100 subroutine alpha (beta)
300 common gamma(3,5),delta(10),epsilon
500 param=beta
700 %350,common theta
700 %35g,integer beta

System: INVALID CORRECTION NO. LINE IGNORED.
User: 700%355,integer beta
Sys,User: 700 10 format (5x,17)
900 %700,10 format (5x,I8)
900 %4,350,355
900 do 25 i=1,3
1100 do 25 j=1,3
1300 %950,gamma(1,1)=param
1300 gamma{i+1,j)=gamma(i,j)*param
1500 %e

2. The user wants to construct a VSAM data set that is made up of a

sequence of commands. The data set is named COMSET and is tc be
used in a BACK command.

128

User: data comset
Sys,User: #ftn raader,n,,,y¥,Y,Y,Y

#logoff
#_back comset
System: BSN=0310

3. The user wants to add to two members of a VPAM data set that is
named OVAL. One member, CIRCLE, has a virtual indexed sequential
organization, and the last line currently in the data set is 500.
The other member, SQUARE, has a virtual sequential organization.

User: data oval(circle),line, 600,100

The system infcrms the user that this is an old VISAM member and
prompts him with line number 600.

600 new line of data
700 another line of data

User: _data oval(square)
System: (The user will be adding to the end of the data set.)

-

4. The user wants to create a VISAM data set to execute three assem-
blies nonconversationally.

User: data assemkly,line
Sys,User: 100 logon
200 procdef assm
300 param $1
400 ddef a,vi,asmac
500 ddef v,vs,asind
600 asm$l,y,macrolib=(a,v)
700 print list.sl,,,edit,,,,,accept
800 _ _end
900 assm progl; assrk prog2; assm prog3
1000 logoff
1100 _execute assembly
System: BSN=0489

DDEF Cormand

This command defines a data set and describes its characteristics to the
system.

Note: This description does not contain all operands for the cammand.

A complete description appears in Appendix E. The LDEF command is shown
pelow in its expected normal form for typical new public VAM data sets.
In this use, most or all of the other operands are defaulted.

r T

|Operation{Operand }
4 + —_————]
| DDEF |DDNAME=data definition namel ,DSORG={VI|VS|VP}] |
{ | ,DSNAME=data set name |
| F]

Part III: Command Cescriptions 129

DDNAME
specifies the symbolic data definition name that is associated with

the data set, and which provides a link between the DCB in the
user's program and the data set definition.

Specified as: £from one to eight'alphameric characters, the first
of which must be alphatetic.

DSORG
indicates the organization of the data set being defined.

Specified as:

VI - VISAM.
VS - VSAM.
VP - VPAM.

Default: the value assigned at system generation if the data set
is new; the existing organization if the data set is cataloged.

DSNAME
specifies the name by which the data set will be (cr is) cataloged
and referred to during the current task.

specified as: a fully qualified data set name and (optionally) a
member name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

Functional Description: The DDEF cormand establishes a system entry for
the data set definition that can be referenced by allocation routines
and access methods. This link between the data set definition and the
problem program's reference to the data set (the DCB) is the data
definition name. The entry containing the data set definition is main-
tained until the task is concluded or until the definition is deleted
via the RELEASE command.

when the DSNAME specified includes a member name, CLDEF defines the VPAM
data set, not the member.

Wwhen a data set is defined, and the RET operand (see Appendix E) is
defaulted, DDEF assumes that the data set resides on permanent storage
with unlimited access. The RET command can be used to change these
attributes once they are established.

Cautions: If a user's program is executing in conversational mode and
refers to an undefined data definition name, a diagnostic message is is-
sued and the user is prompted for information. In nonconversational
mode, the task is abnormally terminated. A FORTRAN user can default his
terminal as the "undefined"™ data source or destination (SYSIN or

SYSOUT) .

Each DDEF command is valid only during the task in which it was issued;
previously defined data sets must be redefined in each new task that
references then.

Programming Note: The user can change the data definition name assigned
in a previous DDEF command by issuing DDEF with the new data definition
name. The only operands required are the data definition name and the
data set name, and all other parameters are ignored. If the user wants
to change the other parameters, he must issue a RELEASE command to
delete the previously issued DDEF command and re-issue a DDEF command to
establish a new system entry for the data set definitionm.

130

The DDEF command cannot be used to change the catalog attributes of an
existing data set; only the DDNAME can be changed.

Examples:

1. The user wants to define a new VPAM data set. He enters:
User: ddef ddnl,vp,dsname=group(meml)
This command defines the VPAM data set GROUP, not the member
(MEM1). A DDEF for GROUP (MEM2) does not create a new data set
definition, but only replaces the data definition name in the pre-
vious CDEF for GROUP {(MEM1).

2, The user wants to define a new VISAM public data set. He enters:

User: ddef ddn2,vi,t.trip3

DDNAME? Command

This command allows a user to 1list the data definition names (DDNAMES)
and associated data set names (DSNAMEs) that are currently defined for
the user's task.

r Y 1
|Operation|Operand |
b $ ~
|DDNAME? | [JOBLIB={Y|N}] |
| . N a4
JOBLIB '

contrels which data definition names are displayed at the user's

terminal.

Specified as:

N - all currently defined DDNAMES are displayed.
Y - JOELIB DDNAMES are displayed in the order in which they will be
searched.

System default: N.

Functional Description: Used to review the user's CDNAMEs, with the
option of reviewing just JCBLIB DDNAMES. Along with the DDNAMES, the
associated DSNAMEsS are listed. If no operand is entered, all data
definition names and corresponding data set names defined in the user's
task are listed.

Example:

User: ddname?

System: DDNAME DSNAME
SYSULIB USERLIB
LPCMNDX MACNDX. GO0OS5V00
LPCMSRC SYSMAC. G0005V00
SYSUSE SYSUSE
SYSLIB SYSLIB.GO007V00
SYSUCAT USERCAT
SYssvcrT SYSsvcr
SYSCAT TSS***%%_ SYSCAT
SYsour CARDTR
SYSIN CARDTR

Part III: Command Descriptions 131

User: ddname? joblib=y
DDNAME DSNAME
SYSULIB USERLIB
SYSLIB SYSLIB.G0007V00

DEFAULT Command

This command changes operand default values.

| . L

|Operation]Operand

F b —-—
{DEFAULT |{operand name=[valuel}(,...] }
L 1 - Jd

operand name

designates the operand whose default value the user wants to alter
or establish.

Specified as: an operand name from a command or an implicit
operand name.

value
specifies the value to be assumed whenever the specified operand
name is omitted in a command. This value does not apply when an
operand value is explicitly given for the operand in a command in
which it appears. This value overrides any previous default value
that was assigned to the operand during the task.

Specified as: a normal or quoted string.

Ssystem default: any previously assigned default value for the
specified operand is deleted.

Functional Description: The syster adds, replaces, or deletes entries
in the user's default table according to the specifications of the com-
mand. When the user has assigned a value to an operand by issuing
DEFAULT, he can enter commands without explicit statemrent of the
operand; the system uses the value he assigns for the remainder of the
current task, unless the task profile is made perranent with the PROFILE
comrand. (See also the description of the PROFILE command and Section 6
in part II.)

Programming Notes: The DEFAULT command can be used to delete previously
defined default entries. The user enters the LCEFAULT command and speci~
fies a mull string to be assigned to the operand name he wants to
delete. Also, since some operands have the same value during one task
or during successive tasks, the DEFAULT command minimizes the necessity
of entering the same value several times, by assigning a value to an
operand in advance of its use.

Example: The user wants to change the system default LIMEN=W to IIMEN=I
permanently in his user profile. He enters:

User: default LIMEN=I1
Sys,User: profile

DELETE Command

This command deletes a data set entry from the user’s catalog.

132

{OperationiOperand
d

DELETE | (DSNAME=data set name)
L

.

DS . -
identifies the cataloged data set that resides on a private volume,
or the shared data set owned by another user that is to be deleted.

Specified as: a fully qualified data set name, a name of a genera-
tion data group, or a partially qualified data set name.

tem default: a partially qualified data set name; the user's
user identification is the only qualifjer.

Functional Description: When the data set name specified is partially
qualified, the action of the DELETE command depends on the mode of oper-
ation. In conversational mode, DELETE tests the DEPROMPT operand in the
user profile to determine whether each fully qualified data set name
referenced by the input name is presented to the user. When DEPROMPT=Y,
the user is presented one fully qualified data sSet name at a time for
disposition. He responds with D and the data set entry is deleted fxom
the catalog (if the data set is private), or he responds with R (for re-
tain) and no action is taken, or he responds with A (for ALL) to delete
all data sets with the partially qualified name. When DEPROMPT=N, all
data sets with the partially qualified name are deleted without prompt-~
ing. In nonconversational mode, the names of all pPrivate data sets
referenced by the input name are deleted, regardless of the value of
DEPROMPT.

If the user wants to delete a data set that he has shared, he must spe-
cify the same name that he used in the associated SHARE command. For
example, if the user issues

share my ,ownerl, *all
and has in his catalog MY.ONE, MY, TWO, and MY.THREE, he can only delete
at the "MY." qualification level. He cannot delete the catalog entrjes
by issuing:

delete my.one
Rather, he must issue

delete my
to delete .the catalog entries.
When the input name cannot be found, the command is ignored.

Whenever the uger attempts to delete one of his own public data sets, a
diagnostic message is issued.

If the user tries to delete a shared data set for which a bulk 1/0 oper-~
ation is pending, the DELETE command is canceled.

Part III: Conrmand Descriptions 133

Programming Notes: Initially, DEPROMPT=Y. To change this value, use
the DEFAULT Command. (See also Section 6 of Part II and the ERASE Com-
mand description in this part.)

When the user wants to delete the catalog entry for a public data set
and to free the space the data set occupies, he must use the ERASE
Command.

To delete a generation data group, you must recatalog each of its mem-
bers as a nonmember of the group prior to execution of DELETE.

Examples:

1. A conversational user wants to delete the data sets with the par-
tially qualified name A.B. DEPROMPT=Y is in his user profile.

User: delete dsname=a.kt

The system asks the user to enter D for Jdelete, R for retain, or A
for all. It prompts with fully qualified data set name.

System: A.B.C

User: r
System: A.B.D
User: 4a
System: A.B.E
User: r

No more data sets begin with A.B so the system prompts for the next
command.

2. A conversational user wants to delete all private data sets whose
names begin with E.F. He issues the following commands:

Nser: default deprompt=n
delete e.f

DISABLE, ENABLE, POST, and STET Cormands

These commands allow the user to control changes to a data set.

L I L ks
|Operation|Operand |
i 1 : M
L3 T 1
|DISABLE | {
L) 2
r R T

|OperationjOperand

[N 4

L] T

|ENABLE |]
| 8 i J
T . Ll L}
|Operationj|Operand |
| 8 i J
¥ 1] 1
| pOST | |
L L F |

R ¥
|Operation|Operand
'f 4
]
8

STET

S

134

Note: These commands have no operands and are ignored when TRANTAB=N.

Caution: A language-processing command (EDIT, PROCDEF, or PLI) must be
invoked before any of these command; is entered.

Functional Description: The TRANTAB operand in the user profile may be
set to either N or Y. (The system-supplied default value is N.) If the
user wants to undo a change made by a text-editing command to a data set
when TRANTAB=N, he must do so explicitly. For example, assume that the
following line is line 200 of the data set ABELINC that is being edited,

0000200 FOUR SCORE AND SEVEN YEARS AGO
and the user issues a REVISE command to modify it:

revise 200
0000200 eighty-seven years ago

If the user decides that he prefers the original wording of the 1line and
wants to restore it, he has to do so explicitly by issuing another com-

mand, such as REVISE. Furthermore, if the user has modified a nurber of
lines and wants to undo many of the changes, he has to make each change

explicitly.

A facility for simplifying such modifications can be introduced by
defaulting TRANTAB=Y. When this option is exercised, the text editor
maintains a transaction table in which changes to a data set are record-~
ed. Additions to the data set are noted in one part of this table,
deletions in another. The only text-editing commands that do not change
lines of the data set, and therefore do not result in entries in the
transaction table, are DISABLE, ENABLE, LIST, LOCATE, and POST.

when TRANTAB=Y, the text editor functions in either of two states, dis-
abled or enabled. The text editor is in the disabled state when it is

invoked; it may be enabled with the ENAELE conrand and returned to the

disabled state with the DISABLE command.

In the disabled state, records of all changes made to lines since the
text editor was last invoked, or explicitly disabled, are maintained in
the transaction table. If a modification is made to a line for which a
previous transaction table entry exists, however, the existing entry is
overlaid by the new one. For example, if the text editor is invoked and
used for the existing data set ABELINC as shown in the sequence:

User: default trantab=y
Sys,User: edit abelinc

Sys,User: dist 200
System: 0000200 FOUR SCORE AND SEVEN YEARS AGO

Sys,User: xevise 200
. 0000200 eighty-seven years ago

the transaction table has

0000200 EIGHTY-SEVEN YEARS AGO
as an addition, and

0000200 FOUR SCORE AND SEVEN YEARS AGO
as a deletion. If the user continues

=¥e,Ueex: ggggggozgolong time ago

Part III: Command Descriptions 135

e

the transaction table contains
0000200 A LONG TIME AGC

as an addition, and
0000200 EIGHTY-SEVEN YEARS AGO

as a deletion. The original wording of line 200, FOUR SCORE AND SEVEN
YEARS AGO, is no longer retained in the transaction table.

In the enabled state, the text editor removes entries caused by previous
commands from the transaction table as each new command is executed.
Consequently, only the changes resulting from the most recently issued
editing command that affected a line of data can be found in the trans-
action table. The text editor becomes enabled when the first editing
command that alters a line of data is entered following execution of the
ENABLE command. For example, in the following sequence

Sys,User: number 50,100
enable
excise 100

the text editor does not kecome enabled until the EXCISE command is
executed. If a nonmodifying command, such as LIST, had been inserted
between the ENABLE and EXCISE commands, it would have been executed in
the disabled state. After the EXCISE command was executed, however, the
text editor remained enabled until a DISABLE conmand was issued, or un-
til the editing session was terminated by a break character followed by
an END, PROCDEF, PLI, or EDIT command.

Similarly, the DISABLE ccmmand does not disable the text editor until a
line-modifying editing command is executed.

The STET command nullifies the changes to the data set that were record-
ed in the table. For example, in the case of the modification to line
200 of the data set illustrated above, the last modification could have
been nullified with the STET command. The Sequence is as shown below.
(Note that line 300 exists so the system prompts for a command after
line 200 has been revised. If line 300 did not exist, the system would
prompt for data by printing 0000300.)

Sys,User: revise 200
0000200 a long time ago
Sys,User: stet
Sys,User: list 200
System: 0000200 EIGHTY-SEVEN YEARS AGO

Note, however, that the original wording of line 200, FCUR SCORE AND
SEVEN YEARS AGO, is lost. A second STET command at this point would
only reverse the transaction takle once again and return the wording of
line 200 to A LONG TIME AGC. Thus, the effect of two ccnsecutive STET
commands (or of two STET commands separated only by non-modifying com-
mands such as LIST) is to revert the transaction table to its status
prior to issuing the first STET command. STET does not change the
disable/enable state of the text editor.

The POST command makes the temporary changes to the data set permanent
and permits the user to continue to make tempcrary modifications. For
example, in the following sequence:

default tramntab=y

edit jbm

0000100 the gquick brown fix
0000200 jumped over the lazy dog

136

0000300 _context 100, ,fix,fox

post

ocontext 200,,d0q,diq

Stet

ldist

0000100 THE QUICK BROWN FOX
0000200 JUMPED OVER THE LAZY DOG

Note that the STET command only reverses the effect of the second
CONTEXT command, since the temporary change created by the first was
made permanent by the POST command. POST does not change the disables/
enable state of the text editor.

To help explain the effect of the DCISABLE, ENAELE, POST, and STET com-
mands, the nature of transaction table entries is illustrated below.

Transaction Table Entries: The examples below describe changes to a
data set and entries in the transaction table. On the left are the com-
mands that change the data set; on the right are the resulting entries
in the transaction table.

Case 1: A new data set is being created. The text editor is disabled.
The sequence is as follows:

Sys,User: region name Transaction Tabile
0000100 akcdef r T 1
0000200 12345 | Additions | Deletions I
0000300 e th t 4 4
0000400 _1list 200 | 100 ABCLEF)]
| 200 12345 | |
| 300 ETH | i
L i J

Notice that the LIST command does not change data and therefore does not
affect the transaction table. HNow assume that a STET command is issued.
The table described in Case 1 appears as:

Sys,User: stet Transaction Table

r T A
| Additions | Deletions |
3 J

[} LY

	100 ABCDEF
	200 12345
	300 ETH
— i . 4

and lines 100 through 300 no longer exist in the data set.

Case 2: Whenever a change occurs to a line for which a previous trans-
action table entry exists, the existing entry is overlaid by the new
one, no matter what the disables/enable status of the text editor is.
Assume the first transaction table and data set from Case 1. 1If line
100 is changed to ABCDMM, the transaction table becomes:

Sys,User: update Transaction Table

User: 100 abcdmm r T e |
| Additions | Leletions |
b -+ i
{ 200 12345 | 100 ABCDEF |
| 300 ETB |} |
| 100 ABCDMM| |
L i J

Part III: Conmrand Descriptions 137

the user tyres in a break Character ang the s command
User: _Stet Transaction Table

r‘*““““‘?“““"‘“““1

| Additiops | Deletions i

*-—-.-—'.-. **‘-_—"{

| 100 ABCDEF[200 12345 |

| | 300 E T3 |

| | 100 aBcpum {

L -~ —————

Lines 2¢¢ and 300 are blank; line 100 is ABCDEF. If a posT command js
issued, the transactjon takle jg emptied, byt the lines of the data set
remain the Same, Thus, POST makes the changes irreversible.

Sys, User: revise 109 Transaction Table
0000100 BBCDMM r~—--—----7-----.--—--.,
' | Additjons | Deletiong |
| 200 12345 | 100 ABCDMM -?
| 300 E 7 |
| 100 EECDMM | |
..... .1.,..-..._._-__1

If STET were issueqd now, line 109 would become ABCDMM, ang not ABCDEF.
Hence, whep multipie Changes are made to a line, only the changes still
reflected jp the transactjop takle are reversible, Following STET, the

Sys,User: Stet » Transactiop Table
' r--~--—-—w*-—--—-—---1
| Additionsg | Deletiong]
—————— STy
| 100 AECDMM| 200 12345]
| 300 E TR 1
| | 100 BBCDMM]

|-.._-_---.....L._..._-~.. ——d

Case 4. When the text editor is €énableqd, €each new table entry Overlays
existing eéntries, These 1ine changes Tresult in ope table entry,

Sys,User:" update Transactjon Table
User: 300 xyzabe r....-_._“._T.....__..__._.,
_oontext 200,300,za,by | Additiong | Deletionsg }
——— O — |
| 300 XYBYBC| 300 XYZABC |
L_..._..-..,L..........u~..n

Only the Change made by the CONTEXT Ccommand arpears in the transactijon
STET issued now could Change only line 300.

Now assume an INSERT Cimmand ig issueq, followeqd by three lines of data
for lines 400, 500, and 600, which do not exist. The transactjion table

138
N

Sys,User: insert 300 Transaction Takle
0000400 hijkl

r T 1
0000500 mnopgq | Additions | Deletions {
0000600 rstuv) } -
| 400 BHIJRL | i
| 5C0 MNoPQ | |
| 600 TSTUV |]
L L 3

Three entries appear in the transaction table, since only one execution
of the INSERT command was involved. A STET command entered now deletes
lines 400, 500, and 600. Notice, however, what occurs if one STET com-
mand is followed immediately by another. 1In the example above, lines
400, 500, and 600, which were moved to the deletions column by the first
STET command, would be moved kack to the additions column by the second
STET command. The effect of a STET command can be reversed with another
STET command.

Case 5: The ENABLE command does not affect the transaction taktle until
after the ensuing editing command that changes a line is executed. As-
sume the editor is disabled and this transaction table:

Transaction Takble

Additions Deletions

200 3040506

300 ATXYZ

.
|
[
L)
100 1 KRST|
|
300 NT476 |

L

I
| 200 30405
]

e el g

When ENABLE is issued, the table does not change. If ENABLE is followed
immediately by STET (or by LIST or LOCATE and then by STET), the entries
are reversed as if the editor is disabled. 1IFf, however, ENABLE is fol-
lowed by:

Sys,User: context 100,300,kr,pq

the transaction table becomes:

Transaction Table

k|
Additions | Deletions

= e
-
N—— -

}
100 1 PQST| 100 1 KRST
L

Lines 200 and 300 of the data set are unchanged.

Cautions: ‘ENABLE and DISABLE do not affect the transaction table until
a command that alters a line is executed. Thus, STET should not follow
ENABLE inmediately because the result is unpredictable.

When multiple changes are made to one line, each succeeding change is

entered in the transaction table, overlaying previous entries for that
line.

Programming Notes: Since the text editor is normally disabled when
TRANTAB=Y, revisions to a data set are temporary. The user can nullify
changes with the STET command. When the editor is enabled, revisions
are permanent, since only the last change is revocable with STET. POST
allows the user to make temporary changes permanent and then continue to
make temporary changes.

Part III: Command Descriptions 139

Following execution of DISABLE, ENABLE, POST, and STET, the user is
always prompted to enter a command.

POST and STET do not affect the disable/enable status. DISABLE, ENABLE,

POST, and STET do not change the value of the CLP.

Examples:

1. The user issues the following sequence of commands:

Sys,User: default trantab=y,regsize=8
edit myprog
region abc
0000100 data line one
0000200 data line two
0000300 data line three
0000400 data line four
0000500 _excise 400
excerpt your prog,pgr,500,700
context 100,300,1ine,number
enable
number 100,last
list
end

In this sequence of commands, the results of EXCISE, EXCERPT, and
CONTEXT are made to the data set and recorded in the transaction
table. When the NUMBER command which follows ENABLE is executed,
these table entries are removed, and the entry from NUMBER exists

alone in the table.

2. Assume a STET command is issued between CONTEXT and ENABLE; the

effect of EXCISE, EXCERPT, and CONTEXT are canceled.

3. STET appears between NUMBER and LIST; only the effect of NUMBER is

canceled.

4. POST appears between EXCERPT and CONTEXT, and STET is issued fol-

lowing CONTEXT; only the effect of CONTEXT is canceled.

5. STET appears between ENABLE and NUMBER; the effect of EXCISE,
EXCERPT, and CONTEXT are nullified.

6. STET appears between LIST and END; the effect of NUMBER is
canceled.

DISPLAY Command

This command prints the contents and names of specified data fields
expressions on SYSOUT.

or

R
peration |Operand
1

-

data field name or expressioni,...]l

|0

2

| DISPLAY |

i | id? data field name or expression(,...]
[X L

S S

data field name or expression
specifies the data field or expressicn tc display.

Specified as: an absolute address, the name of a data location, an
array, a control section, a symbolic range, an arithmetic or logic-

al expression, a quoted string, or a command variable.

140

id? data field name or expression
specifies one or more data fields or expressions for which the

CSECT name, load address, and length are to be displayed.

Specified as: the characters "ID?" followed by the name of a data
location, an array, a symbolic range, or an internal or external
symbol. (See "Types of Operand Specification®™ and "Operand LCefini-
tions® in Section 3 of Part II for explanations of these terms.)
For multiple requests in one DISPLAY command, the characters *ID?*
must be repeated for each data field or expression. Data fields or
expressions preceeded by ID? and those not preceeded by ID? are
interchangable in one commanad.

Functional Description: The contents of each specified data field, i-
dentified by the name entered in the operand field, are printed. The
format of this printout is established by the system, according to the
type and length attributes of the data field. If the data field type is
not defined, it is assumed to be hexadecimal. If the user's task is '
conversational, the data field is printed at the terminal; if the task
is nonconversational, it is entered on SYSOUT. When a control section
name, used as an internal symbol, is entered as an operand of DISPLAY,
the entire control section is automatically formatted in accordance with
information in the internal symbol dictionary and is printed in symkolic
form in assembler language. When a control section name is used as an
external symbol in DISPLAY, the entire control section is printed in
hexadecimal.

When a symbolic range of internal symbols, without offsets, is entered
as an operand of DISPIAY, the specified range is automatically formatted
and printed in symbolic form. If either internal symbol in a symbolic
range has an offset, the output is in hexadecimal.

When a quoted string is specified as an operand, the string (without the
delimiting quotes) is displayed.

When an arithmetic expression is specified, it is evaluated, and the re-
sult is displayed.

The ID? form of the DISPLAY command displays the CSECT name, load
address, and length for the specified data location, array, or internal
Oor external symbol. This information is displayed as: ID=csect name
LOADED AT address, length BYTES LONG. Multiple requests in one DISPLAY
command require that each address or name must be prefixed by the char-
acters ID? (see example 7).

Programming Notes: Arithmetic operations may be executed with the
DISPLAY command if the user does not want to have the result saved in
storage. The type and length of the operands must be compatible.

When the user is in conversational mode, he can terminate the printout
by pressing the ATTENTION kutton at his terminal. If more than one data
field had been specified in one DISPLAY command, the next data field is
displayed; otherwise, control is passed to the terminal.

Examples:
1. The user wants to print a header and the contents of register 6E.
User: display 'register 6',6e
System: REGISTER 6
System: 6E = .27182818E + 01
2. The user has a 5 by 5 integer array and wants to display the first
10 elements of the array, and the €lement ARRAY (I, K).

Part III: Conwand Descriptions 141

Note:

3.

DMPRST Command

display pgm.array (1,1):

(pgn.I,pgm.K)

PGM.ARRAY (1,1):

5-8 16
(1,2) 9 -6)
PGM.ARRAY (4,5) = -16

(1,1 4

3 227

pgm. array (5,2),pgm.array

PGM.ARRAY (5,2) =

The elements may ke referenced symbolically, but the system pro-
duces the actual subscript values.

The user wants to display the result of 9 + 5,

User:
System:

The user

The user
issues:

User:

The user
SAM. He

User:

display 9+5

14

wants to display the contents of the data field PATTERN.

display pattern

PATTERN=U4020202020202020

wants to display the address of the data field PATTERN.

display a'pattern'

0042p320

wants to display the CSECT name fcr symbol JOE. He

display id? joe

wants information displayed for symbols JCE, JACK, and

issues:

display id? joe,id? jack,id? sam

This command performs a time-shared dump and restore of a VAM2 disk

volume.

L 3 T 1
|0peration|0perands |
¥ 4
| DMPRST]FROMDEV“I2311|231Qtzuxx[3330|333E} FRVOLID=({volid] (vol id }
i j[,volidl)},TODEV={2311] 2314} 24xx]3330] 333B} |
i | [, TOWLID={volid| (volid(,volidl)| PRIVATE}] }
| | [, NEWVLID=volidl[,WRITCHK={YES|NO}1(, LABEL—[RETAIN}NO}I }
| | {,1,RUNMODE={BACK| FORE } i
i i 4
FROMDEV

specifies the device type that the from-volume is to be mounted on.

If not given,

Specified as:

2311
2314

3330
333B

FRVOLID

142

specifies the volume identification number (VOLID) of each from-

volume.

disk in vAM2 format.
disk in vaM2 format.
24xx - 9-track dump tapes containing a properly formatted durmp.
3330-1 disk in VAM2 format.

3330-11 disk in VAM2 format.

the command is canceled.

If not given, the command is canceled.

Specified as: one to six alphameric characters.

Notes:
1. Only one VOLID may be specified for disk.

2. One or two VOLIDs may be specified for tape, each of which
must have a standard label.

3. Multiple tape volids must be specified in the order in which
the tapes are to be used. ‘

4. Duplicate VOLIDs for the same device type are not permitted.
5. Blanks contiguous to a comma or parenthesis are ignored.

TODEV .
specifies the device type that the to-volume is to be mounted on.
If not given, the command is canceled.

Specified as:

2311 - disk in VAM2 format.
2314 - disk in VAM2 format.

2400 - labeled 9-track scratch tapes.
3330 - 3330-1 disk in VvAM2 format.
333B - 3330-11 disk in VAM2 format.

Note: the following chart indicates valid FROMLEV and TODEV pairs:

FROMDEV TODEV

24xx 2311, 2314, 3330, 333B 24xx legend

2311 24xx, 2311, 2314, 3330, 333B 2408 -- 800bpi
2314 24xx, 2314, 3330, 333B 2416 -~ 1600 bpi
3330 24xx, 3330, 333B 2462 -- 6250 bpi
3338 24xx,333B

When FROMDEV is a 24xx, TODEV must have a capacity equal to or larger
than the disk used to create the 24xx.

TOVOLID
specifies the volume identification of each to-volume.

Specified as: from one to six alphameric characters or PRIVATE.
PRIVATE - a scratch volume is requested.
System default: PRIVATE.

Note: If TODEV=24xx, and more tapes are required than are speci-
fied, the system requests scratch volumes.

Part III: Command Descriptions 143

NEWVLID
specifies the volume identification number to be put in the to-disk
label at the completion of the job. This parameter is ignored if
TODEV=24xx.

Specified as: from one to six alphameric characters.

System default: the volume identification number in the volume
label used (see LABEL) is unchanged.

Note: The NEWVLID may duplicate one already in use.

WRITCHK
specifies whether writing of pages to disk is followed by a read-
after-write validity check. This parameter is ignored if the
TODEV=24xx.

Specified as:

YES - write checking is performed.
NO - normal error recovery is used.

Syster default: NC.

LABEL
specifies whether the volume label on the to-disk is to remain, or
the volume label on the from-disk is to te used. This parameter is
ignored if TODEV=24xx.

Specified as:

RETAIN - use the 1label on the to-disk.
NO - use the label on the from-disk.

Syster default: NC.

(1
necessary, when RUNMODE is specified in positional notation, to
maintain system compatibility.

RUNMODE
specifies whether a nonconversational task is to be created to run
the dump and restore. This parameter is ignored if the task is
nonconversational. If not given for a conversational task, the
cormand is canceled. .

Specified as:

BACK - a nonconversational task is created to run the dump and
restore.

FORE - the dump and restore is run in the user's conversational
task.

Functional Description: DMPRST can be used to dump a VaM2 disk to ei-
ther a 9-track tape with standard TSS labels or to a VAM2 disk that has
been prepared by DASDI. The command can also be used to restore a dump
tape to a VAM2 disk. The dump tape must be either one dumped by DMPRST
or a standard labeled tape dumped Ly the independent utility program
(DASDDR). A disk dumped to tape with DMPRST may alsc be restored with
DASDDR. If error pages were found and assigned when the disk was pre-
pared by DASDI, pages that fall on error pages are relocated {(up to 96
relocations). Otherwise, all data pages are put in their original
places.

144

The DMPRST tape format differs slightly from the independent utility
program tape.

1. DMPRST does not dump or restore disk user-labels. If thise reccrds
are desired, the independent utility Dump/Restore is required.

2. DMPRST, when dumping to tape, writes the IPL records from constant
areas and, when restoring, skips these records. If a disk is to be
used for IPL, the proper IPL text must be on the to-disk before
restoring. DASDI can be used to write this IPL text.

3. If a dump requires more than two tape volumes, this command cannot
be used for the restore. The independent utility Dump/Restore can
restore a dump of one or more tapes.

All space is assumed to be available on the to-volume. Disk pages not
actually used are made available and are left unchanged. No entries are

made to or deleted from the catalog.

If RUNMODE=BACK is specified, the maximum command string length (no
count ing keywords) is 120 bytes. v

The tape DDEF dses DSNAME=DR. VAM2.LISK. DUMP and DDNAME=TSU52814. These
names should not be in use when using this command to Qump from or

restore to tape.

If the VOLID of the to-disk is changed by this command, the operator is
requested to change the external ID of the disk and the VCLID in the
symbolic device entry (SDAT) is cleared. If, as a result of this
change, the VOLID duplicates one in use, the proper volume must be used.

The maximum tape record length for 2311 and 3330 dumps is 4096. For a
2314 dump tape, the maximum record length is 8192 bytes. If a dunp tape
is copied, care must be taken to insure that a full-length record is
copied for each record.

When dumping to a tape, if the tape is file protected, the task is
abnormally terminated when trying to write a tape label.

DSS? Command

This command presents the status of one or more cataloged data sets to
the user. :

r —T 1
jOperationjOperand 1
i 4 3
4 T 1
| pss? | NAMES={dataset name|{data set name(,...1)} |

Il 1

L
Note: Manager's and administrators should see Manager's and Administra-
tor 's Guide for specialized operands.

' NAMES
identifies one or more cataloged data sets for which status infor-

mation is to be presented,

Specified as: one or more fully or partially qualified data set
nares. when two or more data set names are specified, they must be
enclosed in parentheses.

System default: the status of every data set in user’s catalog is
presented.

Note: When this operand specifies a VPAM data set, only the status
of the VPAM data set is given, not that of each member.

Part III: Command Descriptions 145

Functional Description: DSS? provides the user with this information
about a data set:

Sharing status - ownership and sharability

Access status - read-only, read/write, or unlirited
Device type and volume number

‘Creation and expiration dates

N

Organization

For VAM data séts'only, the date last used and the data set size,
record form, and logical record length.

"If a partially qualified data set name. is specifiéd, the status of each
data set, with the specified qualifiers, is presented. . :

sharing status is given only for those data sets that are permitted (via
the PERMIT command) under their fully qualified names. No sharing sta-

tus is given if a partially qualified data set name or the user's entire
catalog is permitted. 1In nonconversational tasks, the status informa-

tion is recorded on SYSOUT; and in conversational tasks, the information
. is printed at the user's keyboard, but the user can terminate the print-
ing at any time by pressing the ATTENTION key. ' o '

pProgramming Notes: The PC? cormand can be used for a briefer descrip—
tion of the status of cataloged data sets.)

‘When using DSS? noncomnversationally, a SECURE command should be issued
before DSS? is issued for data sets on private devices. .

Examples:
1. The user wants to present the status of his data sets.

User: - dss?
"~ System: NICHOLAS.USERLIB
: SHARED AT LEVEL 02 BY NICHOIAS, ACCESS: RW.
VOLUME: DB0622 (2314)
ORGANIZATION: VP ‘ PAGES: 0000071 .
REFERENCE DATE: 154/71 - CHANGE DATE: 154/71

ANICHOLAS.NICHOLAS.TEST
VOLUME: DB0668 (2314)

 ORGANIZATION: VI) PAGES: 0000000
 REFERENCE DATE: 084/71 " CHANGE DATE: 084/71
RECORD FORMAT: V - " RECORD LENGTH: 0000132

KEY LENGTH: 0000007 ' KEY POSITION: 0000004
NICHOLAS.TA000304. SOURCE. SINGLE

"VOLUME: 014442 (9-TRACK TAPE)

'ORGANIZATIONz PS

2. The user wants to present the status of all data sets qualified by
D-A. o A B ' . .) .

‘User;. dss? 4d.a

The system presents the status information.

- 186

JUMP Command

This command places the contents and names of specified data fields or
expressions in the data set with a data definition name of PCSOUT.

i

-

L 1
|OperationjOperand !
} 4

r]
{DUMP | data field names or expressionl(,...} |
] | id? data field name or expression{,...} |
L L d

'

data field name

identifies one or more data fields or exrressions to be placed in
the PCSOUT data set.

Specified as: the name of a data location, an array, or a control
section; a symbolic range, an arithmetic of logical expression, a
quoted string, an absolute address, or a command variable.

id? data field name or expression
specifies one or more data fields Or expressions .for which the
CSECT name, load address, and length are to be dumped.

Specified as: the Ccharacters id? followed by a data location, an
array, an internal or external hame, or a symbolic range. (These
terms are explained in Section 3 of Part II under “Types of Cperand
Specification™ and "Cperand Definitions.") For multiple requests in
one DUMP command, the characters ID? must be repeated for each data
field or expression. pata fields or expressions preceded by id?
and those not preceded by ID? are interchangable in one command.

Functional Description: The contents of the specified data fields are
output to the PCSOUT data set. The format of the results is the same as
for DISPLAY.

Programming Notes: DUMP should be used for large amounts of data.

There can be only one PCSCUT data set per task. It must be organized as
a line data set. The user has facilities for pPrintout control of the
data produced by the DUMP command. This procedure is recommended :

DDEF PCSOUT,VI,DSNAME=name
DUMP data field name
RELEASE PCSoUT

PRINT name,, ,EDIT

PCSOUT must be specified as the data definition hawe on a DDEF command
Or a DDEF macro instruction before DUMP is issued. If no definition has
been given, the user is prompted to issue one. Refer to Appendix E for
a detailed description of the DDEF command.

The user can specify the ERASE option in the PRINT command to remove the
PCSOUT data set from his catalog.

Examples:
1. The user wants to output the contents of an entire control section
to his PCSOUT data set. Assume this is the first use of puMp in
this task. He enters the following commands:

User: ddef pcsout,vi,dsname=1ist.pcsout
dump pgm.csectl

Part III: cCorrand Pescriptions 147

The system puts the information in the PCSOUT data set.

2. The user wants to see the contents of a control section, but does
not have an 1ISD for the program module. He issues a DWMP, using
the control section name as an external symbol; however, he fails
to issue a LOAD command for the object module. :

User: dump csect
The system loads the module and outputs data.

3. The user wants to dump the CSECT name associated with the syrbol
JOE. He enters:

User: dump id? joe

The system displays the CSECT name, load address, and length.

EDIT Command

This command invokes the system®s text-editing function for a VISAM or
VPAM data set.

1 3 T
|Operation|Operand
L

+
| EDIT |DSNAME=data set name [(merber name)}{,RNAME=region name]}

} | [,REGSIZE=region name lengthl]
L L

IR

DSNAME
identifies the data set to be edited or created.

Specified as: a fully qualified data set name and (optionally) a
rember name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

RNAME
identifies a region, within the data set specified in the DSFAME
operand, to be created or edited.

Specified as: an existing region name or a string of from 1 to 2u4
characters. The value of the REGSIZE operand determines the maxi-
mum length of the region name. Region names are padded with klanks
or are truncated on the right to fit the specified length.

REGSIZE
specifies the maximum length of each region name for the region
data set.

specified as: a decimal number from 0 to 2u44. 1If 0 is specified,
a line data set is created.

Systen default: O.

Functional Description: The EDIT command invokes the text editor and
initializes the transaction takle if TRANTAB=Y. Then, ELIT ascertains
whether the specified data set or region exists or has previously been
defined within the task.

If the data set or region exists, EDIT assumes the existing data defini-
tion values and prompts the user with an underscore so that he may enter
commands. The CLP is set to the first line of the data set.

148

If the data set does not exist, EDIT defines it and prompts with the
first line number of the new data set (specified by BASE in the user
profile; the default is 100) if LINENO=Y. If a region name is specified
in the EDIT command, EDIT prompts with the first line of the new region.
If the region name is not specified, but REGSIZE is greater than 0, EDIT
prompts with an underscore so that the user can specify a region name
with the REGION command.

The type of prompt a user gets depends on the value of LINENO, the value
of REGISZE, and whether the data set or region is new or old. Takle 17
summarizes the prompt.

Table 17. Type of prompt after the EDIT command

REGSIZE > O

T

|
Region is New| Region Exists

REGSIZE = 0

LINENO
Value Data Set

Exists

Data Set is
New

iy qoum —

L g
|
+
|
|
+
n| If a regiom Prompt with an
| name is spec-| underscore
| ified, promgt
{ with the
| value of
|
|
|
|
+
|
|
|
|
]
|
|
|
|
1

Prompt with
the value of
BASE

Prompt with a
underscore

— A e st

<

BASE; other-
wise, prompt
with an
underscore

Open the
terminal to
accept data

Prompt with
an underscore

If a region
name is sgec-
ified, open
the terminal
to accept
data; other-
wise, prompt
with an
underscore

Prompt with
an underscore

i

p-——«——-——-—»-—-—-—-—-q—-—mo—-———‘u———.——-T-—.-—-—-—-—q
2

.
|
b v
| n
1 |
" f
| |
| |
! |
| |
! !
! |
| !
| |
! |
+ }
! |
| !
! !
! !
I |
! |
| !
' |
| |
i '}

P ot e o e U et e e s S it i Bt gy s e
h—-—-———-.—.—-——-ﬂ‘-—.—.——-—-———

Prograrming Notes: The user can precede EDIT with a CDEF command to
specify the DCB suboperands he desires. To create a region data set
with maximum line length, the DCB values might be:

RKP=4,RECFM=V,LRECL=256 ,KEYLEN=15

A separate EDIT command must be issued for each data set to be process-
ed. The user can terminate processing of one data set and begin proc-
essing another by issuing an EDIT command without an intervening END
command. ‘

Following EbIT. the user can issue any command.
Examples:
1. The user wants to create a line data set named LINEDS:

User: edit lineds
System: 0000100

Now, the user can enter data, and the system will continue to pro-
mpt with line numbers in increments of 100. To enter a command,
for immediate execution, the user must enter the break character
followed by the command.

Part III: Command Descriptions 149

2. fThe user wants to create a region data set, REGLS, with a region
name length of 15 characters. He wants to create region XYz, and
does not want line numkers displayed:

User: default lineno=n;edit regds,xyz,15

The system unlocks the keyboard so that the user can enter data at
line 100 of region xyz.

The user can also use the REGION command to operate on other
regions in the data set. {(see the description of REGION later in

this part.)

3. The user wants to edit an existing data set, LINEDS, which begins
at line 100. He wants the transaction table active:

User: default trantab=y;edit lineds
System:

CLP is set to the first line in the data set.

EJECT Command

The EJECT command causes a skip to a new page in the non-conversational
SYSOUT listing. When the SYSOUT is a terminal, a triple space is domne
instead.

r T
|Operation|Operand
|8 4

\-—--L—.-.J

i T
|EJECT |

———— ——

Note: This command has no operands.

Functional description: The EJECT command module issues a YGTWRC' macro
#ith an 'EJECT' ASA carriage control character. The EJECT carriage con-
trol character is handled differently according to the SYSOQUT. For
2741, TTY's and 3215 (1052-7) the paper is spaced up 3 times by issuing
three carriage return characters. For SYSOUT datasets with carriage
control specified, the carriage control character is included as the
first character in the record. when the dataset is printed with the
EDIT option, the carriage control character wiil cause an eject to the
next page on the printer. If carriage control is not specified on the
SYSOUT dataset, the carriage control character is deleted and a blank
line is inserted instead.

Example: The user wishes to start the output from command B on a new
page in the SYSOUT dataset.

User: command A
EJECT
command B

System: ee...0utput from A.....

EJECT to new page
e---<-.0utput from B.....

ENABLE Command

See "DISABLE, ENABLE, POST, and STET Conrmands. ™

150

END_Command

This command terminates processing of a language processor controller
(LPC).

3 L]
|Operation|Operand

F + e
| END |

L L

Note: There are no operands.

functional Description: When an LPC, such as EDIT, PROCDEF, or PII, is
invoked all text editor functions become available. When END is issued
the use of these functions is inhikited, and control is passed to the
processor's end routine (previously defined when the IPC was invoked).
The end processing depends on the particular processor. 1In the case of
EDIT, the data set is closed; whereas, in the case of PROCDEF, the pro-
cedure just defined or edited is saved, but the data set is not closed.
The function of END for PLI is described under the PLI command.

Programming Notes: The user can terminate processing of cne LPC and
begin processing another by issuing an EDIT, PROCLCEF, or PLI command
(preceded by a break character, if necessary) without issuing an inter-
vening END command. The previous LPC's end-processing routine is
entered before the new LPC is invoked.

when the system expects data, the END command must be preceded by a
break character. To enter an END command preceded by the break charact-
er as a line of data, as in a PROCDEF, two break characters must precede
the command.

Caution: This command is not the END statement for the Assembler or
FORTRAN compiler.

Examples:

1. The user wants to terminate this editing procedure. The data set
MYPROG already exists.

Sys,User: edit myprog
Sys,User: context 700,900,1m,stm
Sys,User: number 200,last

Sys,User: end

END, in this case, is not preceded by a break character as the sys-
tem is expecting a command (it prompted with an underscore).

2. The user creates this data set.

User: edit myds

Sys,User: 0000100 line one
0000200 line two
0000300 _end

The system expects data for line 300, so END must ke preceded by a
break character.

3. 1If the user wants to terminate processing of data set MYDS in exam-
ple 2 and begin processing a new data set AMYDS, his entry for line
300 is

Sys,User: 0000300 _edit amyds

Part III: Conmwand Descriptions 151

ERASE Command

This command frees the direct access storage assigned to a data set, and
the catalog entry for a data set is removed from the user's catalog.

| T]
|Operation|Operand]
[1
1 } 0 e
| ERASE | IDsNAME=data set namel (rember name)ll{,SHARED={Y|N}] }
L L J
DSNAME
identifies the data set, which resides on direct access storage, to
be erased. VAM data sets must be cataloged; and physical sequen-
tial data sets must already be defined by a DDEF command within the
current task, or must be cataloged.
Specified as: a partially qualified data set name, or a fully
qualified data set name and (optionally) a member name of a VPAM
data set, or its alias. When specified, the member name or alias
is enclosed in parentheses and immediately follows the VPAM data
set name.
Systenr default: all data sets qualified by the user's user
identification.
SHAREL

specifies for shared data sets whether or not an implicit search of
the owner's catalog is to ke performed (see prcgramming notes).

Specified as:

Y - search.
N - no search.

Syster default: N.

Functional Description: In conversational mode, when the data set name
specified is partially qualified, the ERASE command tests the DEPROMPT
operand in the user profile to determine whether each fully qualified
data set name referenced by the input name will be presented to the
user. If DFPROMPT=Y, the user is presented one fully qualified data set
name at a time for disposition. When he responds with E {(for erase),
the data set name is removed from the catalog, and the direct access
storage occupied by that data set is freed. If he responds with R (for
retain), no action is taken. If he responds with A (for ALL), all data
sets with the specified qualifiers are removed from the catalog. If
DEPROMPT=N, all data sets are erased without prompting.

In nonconversational mode, all data sets referenced by the input name
are erased.

When the user enters a fully qualified data set name, the data set is
erased, regardless of the value of the DEPROMPT operand or the mode of
operation.

When the DSNAME operand does not contain a member naxe, the direct
access storage occupied by that data set is freed and the data set name
is removed from the catalog.

When the DSNAME operand specifies a member name or alias of a VPAM data

set, the member name or alias is deleted from the partitioned organiza-
tion directory (POD), and the storage occupied by tli member is freed.

152

Any previous DDEF command issued on a data set that is erased is
released.

When a user, with sharing access U (for unlimited), attempts to erase a
shared VISAM or VPAM data set, the system checks for any active users
(including the one who issued ERASE) of that data set.

e If there are active users, the system issues a diagnostic message
and disregards the ERASE command. In conversational mode, the diag-
nostic message appears at the terminal, followed by an underscore
that requests the next command. 1In nonconversational mode, the new
command is retrieved from the task's SYSIN after the diagnostic mes-
sage is sent to SYSOUT.

e If there are no active users, the ERASE command is executed.
Cautions: The ERASE command cannot be used for data sets on magnetic
tape. It applies only to data sets on direct access storage.

The user should not issue an ERASE command for a loaded module. The
module should be unloaded first.

In nonconversational mode, the SYSIN data Set cannot contain an ERASE of
itself.

&ven though the RET command has been invoked to give a user read-only
access to a data set, he may still erase that data set.

If DEPROMPT=N and the ERASE command is issued, all data sets are erased
without prompting.

Programming Notes: DEPRCMPT is initially set to Y. To change its
value, the user issues the DEFAULT command, with DEPRCMPT as an operand.

The SHARED operand is only meaningful in the situation where ERASE is
specified with a partially qualified name and an entry exists in the
user's catalog for a data set whick was shared at a lower level of qua-
lification. In this case, if SHARED=N is specified, the descriptor
entry will be deleted from the sharer’'s catalog, but the data set entry
will remain in the owner's catalog and the data set will not be erased.

Examples:

1. A conversational user wants to erase several data sets whose names
begin with A.B. DEPROMPT=Y is in his user profile.

User: erase dsname=a, L

The system asks the user to enter E for erase, a for all, or R for
retain; it prompts with the fully qualified data set name.

System: A.B.C

User: r
Syster: A.B.D
User: r

The system prompts for next cornmand when all data sets with the
fully qualified name have keen presented.

2. A conversational user wants to erase all data sets whose names
begin with the components E.F.

User: default deprompt=n
erase dsname=e.f

Part III: cConrrand Descriptions 153

The system erases the cataloy entries and frees the virtual storage
occupied by all data sets with the fully qualified name E.F.

EVV Comnrand

This command catalogs private VAM volumes by volume.

~ 1
Operat10n|Operand]
E

]

b E—
|EVV]DEVICE-{2311|2314|3330:333B} i
| | s VOLUME=(volume serial number [,...1) |
L

No

I 8 4 >

te: Managers and administrators should see Manager's and Administra-
tor's Guide for specialized operands.

DEVICE
specifies the type of direct access device on which the VAM volume
resides.

Specified as: 2311 or 2314 or 3330 or 333F (3330-11 disk)

VOLUME
identifies the volume or volumes to be processed.

Specified as: a one- to six-digit volume serial numker for each
volume. The volume serial numbers are all enclosed in one pair of
parentheses.

Functional Description: EVV catalogs only the user's data sets on the
volumes specified, but does not open them for use by subsequent
programs.

Programming Notes: EVV allows the user to introdu:e VAM data sets
created under other TSS systems into his current : nstallation, or to
recatalog his previously deleted VAM data sets. irivate VAM data sets
created under TSS are automatically cataloged.

Example: The user has three private volumes that are necessary for the
execution of his program. Be wants to enter them into the system.

User: evv 2311,(111500,111501,111502)

The system makes catalog entries for all of the user’s data sets
residing on the specified volumes.

EXCERPT Conrmand

This command inserts a region or range of lines from ancther data set
into the current data set.

¥ L) Al
joperation|Operand i
i /] .]
1 2 T |
| EXCERPT |DSNAME=data set namel {member name)][,RNAME=region namel H
| |[,N1=starting linel,N2=ending linell }
L 1 2
DSNAME

identifies the data set from which the region line, or range of
lines, is to be taken. This data set must already be defined by a
DDEF command within the current task or must be cataloged. When

154

DSNAME refers to a VPAM data set, a member name must also be
specified.

Specified as: a fully qualified data set name and (optionally) a
member name of a VPAM data set. When specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

RNAME
identifies the region from which data is to be inserted into the
current data set or region, either in its entirety, or within the
range specified by N1 and N2.

Specified as: the name of the region, expressed as a normal or
quoted string, from which data is to be copied.

Systen default: when N1 and N2 are specified, it is assumed that
the data set named in DSNAME is a line data set. When N1 and N2
are both omitted, the entire data set named in DSNAME is inserted
as a single region. When only N2 is omitted, the line designated
by N1 is inserted.

N1
specifies the line, or the first of a range of lines, that is to be
inserted in the current region.

Specified as: a one- to seven-digit absclute decimal number .
System default: If N2 is also omitted, the entire data set -- or
region, if RNAME is specified -- is inserted. 1If N2 is specified,
N1 is assumed to be the first line in the specified region or data
set.

N2

specifies the last in a range of lines that is to ke inserted in
the current region.

Specified as: an absolute one- to seven-digit decimal number. Can
also be specified as LAST to indicate that the lines to be
excerpted range from the line specified by N1 to the end of the
data set.

System default: the entire data set is inserted when N1 and RNAME
are omitted. If RNAME is specified, the entire region is inserted.
When only N2 is omitted, only the line specified by N1 is inserted.

Note: This operand cannot ke specified unless N1 is used.

Functional Description: Insertion is always made immediately after the
data line that is the current line location at the time the command is
issued. The system automatically renumbers the inserted lines by using
the value of INCR. If the existing line numbers do not accammodate the
number of lines to be inserted (for example, the user is trying to
insert more than 99 lines between line numbers 400 and 500), the command
is not executed, and a diagnostic message is issued.

The user is prompted when these exception conditions occur:
¢ Remumbered lines would overflow the interval between lines.
®* The data set or region to be excerpted could not be found.
¢ The line number within the region or data set to be excerpted could
not be found.

Part III: Conmand Pescriptions 155

e The end of the region was reached before any of the requested lires
could ke excerpted.

Upon completion of this command, the CLP points to the next line follow-
ing the last inserted line or to the last inserted line plus the value
of INCR, whichever is less. : .

caution: A language-processing cormand (EDIT, PROCDEF, or PLI) must be
invoked before the command is issued.

Programming Notes: When EXCERPT is preceded by a break character and
follows an INSERT command, the excerpted lines are added to the current
data set or region. When EXCERPT is preceded by a break character, but
follows an EDIT or REGION command, the excerpted lines are added to the
data set or region. In this case, the data set or region must be new.
If the data set is not new, INSERT must be issued first to position the
CLP to a line number other than the first line in the data set or
region. When EXCERPT (preceded by a break character) follows REVISE,
these lines replace the lines deleted by REVISE.

Examples: The user is editing data set XYZ, which has regions XY¥zZi and
XYZ2. He wants to excerpt lines from data set BABEC (regions ABC1l and
ABC2). Lines in all regions are numbered in increments of 100.

1. The user wants to excerpt the entire data set BEC into new region
XYZ3.

User: region xyz3
Sys,User: 0000100 _excerpt abc

The system inserts data set ABC into the current region XYZ3.
2. The user wants to excerpt only lines 300 through 500 from region
ABCl in data set ABC to the end of region XY¥'1. Assume CLP is

positioned in region XYZ1.

User: insert last
Sys,User: 0001100 _excerpt abc,abecl 300,500

The system inserts lines 300 through 500 from region ABC1 at the
end of region XYZ1.

3. The user wants to replace lines 200 through 400 in the current
region DEF2 with lines 800 through 2000 in region ADD3 of ancther
data set MYDS. '

User: revise 200,400,110
Sys,User: 0000200_excerpt myds,add3,800,2000

The system replaces lines 300 through 500 in region CEF2 with lines
800 through 2000 from region ADD3, using an increment of 10.

EXCISE Command

This command deletes a line or a range of lines from the current region.

r T - - 1
30peration!0perand .J

4 +
| EXCISE | [Nl=starting linel({,N2=ending linel |
L L - 4

156

N1
designates the line, or first of a series of lines, to be deleted
from the current region.

Specified as: a one- to seven-digit decimal line number that may
be absolute or relative. ’ .

LAST - last line in the current region.

System default: the value of the CLP.

N2 .
designates the last line in a series of lines to be deleted from
the current region.

Specified as: a one- to seven-digit decimal line number that may
be absoclute or relative.

LAST - last line in the current region.

System default: only the line specified in N1 is deleted. .

Functional Description: After EXCISE is executed, the CLP is set to the
value specified in N1. The user is then prompted for a command.

Caution: A language-processing command (EDIT, PROCLEF, or PLI) must be
invoked before the command is issued.

Programming Notes: Since the CLP is set to the value of N1, the user

may follow this command with either an INSERT Or EXCERPT command. The
REVISE command is equivalent in function to EXCISE followed by INSERT.

Examples:
1. The user wants to delete line 113 in the current region.

User: excise 113

System:

2. The user wants to delete the next 10 lines beyond the CLP in the
current data set.

User: excise ni=+1,n2=+10
System:

3. The user wants to delete all lines between 100 and 300 in the cur-
rent region.

User: excise 101,299

System

EXECUTE Command

This command introduces a nonconversational task into the systen.

L] bl
|Operation|Operand
|8 4

b St vl e id

r T
} EXECUTE |DSNAME=data set name
L i

DSNAME

identifies the vsaM (fixed-forrat or variable-format) data set or
the VISAM line data set that resides on public storage and that
contains a series of commands starting with LOGON and ending with

Part III: Command Descriptions 157

Funct

LOGOFF. This data set kecomes the SYSIN of the nonconversational
task.

specified as: a fully qualified data set name.

i

jonal Description: EXECUTE requests creation of a nonconversation-

al ta

Sk that is independent of the user's current tasks. A BSN is as-

signed for the task, and the task is created when task space becones

avail

Progr

able.

amming Notes: The nonconversational task is contrclled by the com-

mands

in the SYSIN data set. Each SYSIN data set represents one task.

The EXECUTE command differs from the BACK command in these ways:

Exa
mands

EXECUTE requests an independent nonconversational task, rather than
changing the user's conversational task to nonconversational mode.

The data set named in the EXECUTE command must contain LOGON and
LOGOFF commands and must reside on puklic storage. The data set
specified in the BACK command need only conclude with a LOGOFF com-
mand and can be private or public.

EXECUTE is accepted by the system even if no task space is current-
ly available. The task will ke created later. If task space is
not available when the BACK command is issued, the cocmmand is can-
celed, and the user continues conversational processing as though
he had not issued the command.

le: The user wants to create a nonconversational task. The com-
for the task are created in a data set named NEWTASK.

User: edit newtask

Sys,User: 0000100 logon ucer01
0000200 asm progx,y.isd=y
0000300 logoff
0000400 _end
execute newtask

The system accepts the task and assigns a BSN.

EXHIBIT Conmand

This
bulk
tive

command allows the user to determine the status of any batch or
170 job he has initiated or to obtain a list of all cuwrently ac-
system users.

L T
| operation|Operand
L 1

L] T
| EXHIBIT |OPTION1={BWQ[,TYPE={ALL|BSN. number}] |

|

L

A N

| UID[,TYPE={CONV|BACK|UID. user id|ALL} 1}
L

Note:

For special operands, see Manager®'s and Administrator's Guide or

Operator's Guide.

OPTION1

158

specifies whether to display katch work queue activity, or active
user task status.

specified as:

BWQ - batch work queue status.
UID - active user task status.

TYPE
specifies the data to be displayed.

specified for BWQ as:
ALL - All BWQ entries, for the user, are displayed.

BSN.number -~ The entxry assigned to the BSN is displayed. (The BSN
is a decimal numkter from 257 to 9999.)

system default: ALL.

specified for UID as:

CONV - All conversational tasks are displayed.
BACK - All nonconversational tasks are displayed.

UID.userid - All tasks are displayed for the specified USERID (from
three to eight alphameric characters).

ALL - All active tasks are displayed.

system default: ALL.

Functional Description: EXHIBIT displays BWQ or user information. For
OPTION1=UIL, the following information is discplayed:

USERID -- The user's identification.
TID -- The task number assigned to the task..

TYPE -- Either CONV for conversational or BACK for
nonconversational.
SYsSI -- Fither a symtolic device address of SYSIN/SYSCOUT for a con-

versational task or a BSN for a nonconversational task.

For OPTION1=BWQ, the following information is displayed.

BSN -- Batch sequence numker.

USERIL -- The user®s identification.

TID -- The task number assigned to the task.

TYPE -- Batch request type: LIST (print), EXECUTE, PUNCH, RTAPE,
or WTAPE.

STAT -- Status of the jok request:

A -- active

P -- pending (awaiting execution)
C -- canceled

S =- shutdown

F -- Erase

DEV -- Type of device required for the job (for example, U/R unit
record).

STAID -- Station identification for Remote Job Entry (RJE) jobs.

DSNAME -- Data set named for the job (up to 35 characters).

caution: After the user issues the EXHIBIT command, his catalog con-
tains a pointer to the SYSUBWQ data set. This data set contains the BWQ
information displayed by EXHIBIT. The user may delete this pointer by
issuing:

Part III: Command Descriptions 159

delete sysubwg
Example:
1. The user wants to display all active tasks.

User: exhibit option1=uid,type=all

System: ACTIVE USER STATUS AT 10:31:59 06711/ 7X
USERID TID TYPE S¥SI

USERIDO1 0056 CONV 0089 USERID02 0057 CCNV 0090
USERIDO6 0060 BACK 0259

2. The user wants to display the status of his nonconversational job
that has BSN=262.

User: exhibit bwq,type=ksn.262

System: BATCH WORK QUEUE STATUS AT 10:34 06711774
BSN USERID TID TYPE STAT TLEV STAIC DSNAME
0262 USERID03 057 LIST P U/R RJESTAO1 DSNAME.HIS

EXIT Command

This command bypasses execution of the current program or command, and
the next command in the source list is executed.

~ N A 1
|Ooperation|Operand |
F ¥ - -
|EXIT | [(SIRTEST={Y|N}] |
L i 4
SIRTEST

specifies whether the system checks for a user-defined SIR routine.

Specified as:

N - system does not check.

Y - system checks for a user-defined SIR routine. If one exists,
the EXIT function is canceled.

system default: N.

Functional Description: The EXIT cormand returns control to the next
command or program in the current source 1ist. Any command that follows
EXIT is ignored. After the current source list is processed, the system
prompts for a command. If the user then enters the GO command, a previ-
ously interrupted source list is executed.

If the SIRIEST parameter is set to Y, the system first checks for any
active user-defined SIR routines. 1f one is active, the EXIT comnand is
canceled. Wwhen the CLEANUP implicit operand is set to ¥, EXIT cancels
all user-defined AETD and SIR routines. AR exit from an AETD routine
causes control to return to the program that was processing when the
AETD routine was invoked by an attention interruption. (AETD and SIR
routines are explained in Assembler User Macro Instructions.)

gxample: The user interrupts a command string containing three program
calls (PROGA, PROGB, PRCGC); the interruption occurred in PROGB. BHe
then issues the EXIT command:

160

The system terminates current cammand processing -- PROGB -- and
passes control to the next program in the source list --PROGC.

If the user had interrupted a source list before he entered the source
list containing calls to PROGA, PRCGB, and PROGC, he could resume proc-
essing at that earlier source list by issuing the GO command after the
system had processed PROGA, PROGB, and PROGC.

EXPLAIN Command

This command allows the user to obtain explanations of entire messages,
or of designated words within a message, that the system has generated.

L v
| Operation|Operand
t)

-y

T
JEXPLAIN }{MSGID]|ORIGIN}word|TEXT|RESPONSE|
| [,message identification]|MSGE|MSGS}
i

b_—-L-—d

MSGID
the identification of some message in the message file (SYSMIF).
Indicates that the user wishes to see the message identification.
Only the message ID will be shown.

Specified as: MSGID

ORIGIN
specifies that the user wants to have displayed the location of the
program (the system's or the user's) that caused the message to be
generated. Every message has an identification code, which is also
displayed.

Specified as: ORIGIN

Note: This form of EXPLAIN assists the user in isclating the
module that caused the message generation and is intended primarily
for system programmers.

word
specifies that a word, within the text of the last message, is to
be explained.

Specified as: a normal or quoted string.

TEXT
specifies that a code-identified message will ke displayed in full
text. .
Specified as: TEXT

RESPONSE :
specifies that the possible responses to the last message are to be
displayed.
Specified as: RESPONSE

MSGE .
indicates that the user wants the extended message to ke displayed.
Specified as: MSGE

MSGS

indicates that the user wants the standard message displayed;

Part III: Cormand Descriptions 161

specified as: MSGS

message identification
specifies a message ID for which a word, text, response, extended
message, or standard message is to be displayed. This form is used
when the request is for a message other than the most recently is-
sued ressage.

specified as: a one- to eight-character message 1D.

Functional Description: If no operand is used with the EXPLAIN command,
the preceding message is restated more explicitly. If the message is
not explainable but contains explainable words, these words are ela-
borated; otherwise, the system's reply is "no explanation.”

Programming Notes: Only one of the options may be specified when an
EXPLAIN command is issued. If the user wants tc use more than one
option, he must give additional EXPLAIN commands.

Example: A user is executing a module named UPTCM as a part of his con-
versational task. This module prompts for the data set organization,
and this message is displayed at the user's terminal:

UPTCM170 ENTER VAM DS. CRG.

The user dces not understand what is required, so he requests an
explanation:

explain
The explanation for the current message UPTCM170 is displayed:

UPTCM170 A VAM DATA SET'S ORGANIZATION DEFINES THE OVERALL RELATICN-
SHIPS OF THE LOGICAL RECCRDS MAKING UP THE LA.A SET
ENTER...VP...OR...V5...0R...VI....

After reading the message explanation, the user wants more information
about the explainable word VAM:

explain vam
A definition of VAM is displayed at his terminal. BAn explanation mes-
sage can, in turn, contain explainable words for which further clarifi-

cation can be requested. Word explanations can continue to any number
of levels.

The user eventually understands the message, but now he is uncertain of
the form he should use in a valid response. He enters:

explain response

Now, all possible responses to the message jdentified by UPTCM170 are
displayed:

VALID RESPONSES ARE: VP, VI, VS

Later in his terminal session, the user again needs the explanation of
UPTCM170; he enters:

explain text,uptcml70
The TEXT option with the message 1D is necessary he-e because the expla-

nation requested is not for the most recently issued message.

162

FILEDEF Command

This command defines a dataset and describes its characteristics to the
system (DDEF). Additionally, it prpvides the link between TSS and OS
ddnames for the Program Product Language Interface. :

Note: The operands with the exception of MACRO, OSCDN and OSKEYLE are
identical to DDEF operands.

Ll v
|Operation|oOperand
i Il

-y

T
| FILEDEF |DDNAME=ddname,DSORG=VI|VS|VP[,DSNAME=dsname...]
{ [,MACRO=CONC] [,0SDDN=0sddname] {, OSKEYLE=number]
L

h——-L-—d'

P a—

DDNAME, DSORG, DSNAME, ...
these are identical to DDEF operands défined in this manual.

MACRO .
signifies that the dataset specified in the LSNAME operand is to be
concatenated with another dataset with the same 0OS ddname (OSDDN
parameter). The OSDDN parameter is required in this case because
the TSS ddname (DDNAME option) cannot be the same for both data-
sets. See example.

specified as: CONC

OSDDN
specifies the OS ddname with which the TSS dataset is to be associ-
ated. If no OSDDN is specified, it is assumed to be the same as
the TSs ddname. If the ddname is specified as SYSxxx, the TSS
ddname will not be changed to TSSxxx, but the OS ddname will remain
SYSxxx.

OSKEYLE
specifies the length of the key. This parameter is required when
0S/VS BDAM or ISAM access methods are being simulated.

Functional description: The FILEDEF command causes a LLCEF to be issued
against the TSS dataset specified with the ddname specified. It also
causes a control block to be built which will be the link between the OS
dataset specification and the TSS specification. The DDEF is issued
exactly as written in the first operands of the FILEDEF parameter list.

Examples: FILEDEF a,vp,dsetl
A control block is created relating the TSS dataset (“"dsetl™) and a TSS
ddname of "a" with an 0S description of that dataset with an OS ddname
also of "a".

FILEDEF b,vi,dset2,0SDDN=dcbout

In this case the TSS and 0S ddnames are different but the control block
built associates them at execution time.

FILEDEF macl,vp,macbbl,OSDDN=syslib FILEDEF
mac2,vp,nmackk2 ,0SDDN=syslib,macro=conc FILEDEF
mac3,vi,mackk3,0SDDN=syslib,macro=conc

This example shows how to "concatenate" three macro libraries to be read

by one OS read statement and one OS ddname. The last one filedeffed

Part III: Command Cescriptions 163

will be searched for the requested member and if it is not found, the
previous will be searched, etc. The TSS libraries may be partitioned ct
region datasets. This facility is only valid if the OS partitioned
access method is used by the executing program.

A FILEDEF command referring to the same dataset name as a previéus FILE-
DEF will replace the old ddname with the new ddnarme.

FILEREL Command

This command deletes the data definition established by a previously is-
sued FILEDEF command. It also disconnects the 0S/TSS link.

| . T : |
lOperat10n|0perand ,]
t }

3 e TS T S T e ""
| FILEREL | OSDDN=0 sddname i
L L J

OSDDN
jdentifies the dataset definition created by a FILEDEF command.

Functional description: FILEREL will cause a RELEASE to ke done on each
TSS ddname associated with the specified 0S ddname. It also causes the

control blcck linking the os dataset specification with the TSS specifi-
cation to be destroyed. This will not be done unless all DCB's against

the datasets are closed.

Example: FILEREL syslit

This will cause all filedef's associated with the 0S dataset specifica-
tion to be released as well as destroying the liiking control blocks.

PTN Comrand

This command invokes the FORTRAN compiler to compile a source program
module.

| Y 1
joperation|Operand 1
L i

8 T “—""""
|FTN | NAME=module name [,STORED={Y|N}1[,VERIC=versicn i
| jidentification] |
1 | [,IsD={Y|N}][,SLIST={Y|N}] (,OBLIST={¥|N}][,CRLIST={Y|N}] |
| | {,STEDIT={Y|N}1[,MMAP={Y|N}] {,BCD={Y|N}]!,PUELIC={Y|N}] |
| |[,LISTDS=(Y|N}][,LINCR=(first 1ine number,increment)]) |
L L 4

jdentifies the object module to be created. If the source program
module (that is, source language data set) is prestored, the user
must have named it:

SOURCE.name

If it is not prestored, the system automatically prefixes SOURCE.
to the source program module name. The listing data set is autc-
matically named:

LIST.name(0)

164

specified as: the part of the source program module name that fol-
Jows SOURCE. -~ if the source program is prestored -- otherwvise,
any one to eight alphameric characters, the first of which must be
alphabetic. The okject module name must not be identical to other
external entry points in the library in which it is stored. See
FORTRAN Programmer's Guide for a complete list of naming rules.

STORED
specifies whether the source program module is prestored.

Specified as:

Y - source program is prestored.
N - source program is not prestored.

System default: N.

VERID
specifies the version identification to be assigned to the object
program module.

Specified as: from one to eight alphameric characters.

system default: the listing and the object modules are
time-stamped.

ISD
specifies whether an internal symbol dictionary (ISD) is to be
produced.

Specified as:

Y - ISD is produced.
N - ISC is not produced.

System default: Y.

SLIST
specifies whether a source program listing is to be produced.

Specified as:

Y - source program listing is produced.
N - source program listing is not produced.

Syster default: VY.

OBLIST
specifies whether an object program listing is to be produced.

Specified as:

Y - object program listing is produced.
N - okject program listing is not produced.

System default: N.

CRLIST
specifies whether a cross-reference listing is to ke produced.

Specified as:

Part III: Corrand Descriptions 165

Yy - cross-reference listing is produced.
N - cross-reference listing is not produced.

system default: N.

STEDIT

MMAP

specifies whether the edited symbol table is to be listed.

Specified as:

Y - edited symbol table is produced.
N - edited symbol table is not produced.

syster default: N.

specifies whether a memory map is to be produced.

specified as:

Y - memory map is produced.
N - memory map is not produced.

syster default: N.

BCD
specifies whether input contains the BCD (binary coded decimal)
form cf special characters.
specified as:
Y - input contains BCD form of special characters.
N - input does not contain BCD form of special characters.
system default: N.

PUBLIC
specifies whether the object module created has a puklic (rather
than private) CSECT attribute. .
specified as:
Y - module has puklic CSECT attribute.
N - module does not have public CSECT attr ibute.
systen default: N.

LISTDS

166

determines whether the user-requested listings from the language
processors are to ke placed in a list data set or placed directly
on SYSOUT.

specified as:

Y - placed in list data set.
N ~ listings to SYSOUT.

system default: Y.

LINCR
specifies the line number to ke assigned to the first line of the
source language data set and the increment to be applied to suc-
ceeding line numbers.

specified as: two three- to seven-digit decimal numbers, separated
by a comma and enclosed in parentheses; the last two digits in each
number must be zeros.

System default: (100,100).

Note: This operand is ignored when STOREL=Y.

Functional Description: See "Language Processing™ in Section 3 of Part
I1I.

Caution: The command is canceled if invalid operands are entered.

Example: The user wants to enter FORTRAN source language statements
from his terminal. The object module is to be named RAADER; the start-
ing line number and the increment are 100. Source program, object pro-
gram, and cross-reference listings are requested. The following program
maltiplies two digits:

Sys,User: ftn raader,slist=y,cblist=y,crlist=y,isd=n
0000100 read (5,10) a,b
000020010 format (1x,2£6.2)
000030020 format (3£10.3)

0000400 atb=a*k

0000500 write (6,20) a,b,athb
0000600 stop

0000700 end

Systerm: _

FTNH Comrmand

This command will invoke the FORTRAN H EXTENDED program product using
the Program Product Language Inter face.

L)
peration|Operand
L

¥
FTNH | NaME=modulename [,CSOPTS=(optl,opt2,...)]

|
| N
]
{ | [, SOURCEDS=sourcedsname]
L i

I-.——-L—d

NAME
identifies the name ky which the okject program will ke known to
TSS. It consists of one to eight alphameric characters, the first
of which is alphabetic. If the SOURCEDS option is not specified,
there must exist a dataset called SOURCE.name which is assumed to
be the source program to be compiled.

OSOPTS

specifies a list of 0OS options to be in effect during the
compilation.

Akbreviated Abbreviated
Form Form Form Form

SOURCE | NOSOURCE S|Nos XREF | NOXREF

Part III: COommand Pescriptions 167

LINECOUNT (number)?

LIST|NOLIST
OBJECT|NOOBJECT3
DECK| NODECK
OPTIMIZE(O[1]2)3
NOOPTIMIZE
FORMAT| NOF ORMAT®
GOSTMT| NOGOSTMT®
MAP | NOMAP
1 Compiler also
2 compiler also
3 Compiler also
4 Ccompiler also
s Ccompiler also

6 compiler also

LC (number)

OBJ | NCOBJ

OPT (0 112)
NCOPT

FMT | NOFMT

accepts the
accepts the
accepts the
accepts the
accepts the

accepts the

NAME (name) ¢

EBCDIC| BCT EB| BCD

* SIZE(MAXnnnK)

AUTODEL (value) AD(value)
ALC|NORLC
ANSF | NOANSE
FLAG (1) | FLAG{E) | FLAG(S)
old form: LINECNT=xX
old form: LOAL|NOLOAD
old form: OPT=0}1}{2
old form: EDIT|NCEDIT
old form: IL|ROID

0ld form: NAEME=name

Addit ional information is available in Appendix K and the CS FORTRAN H
EXTENDED Programmer‘'s Guide.

SOURCEDS

" specifies the nane of the input dataset (S.SIN to ¢s) if source.
medule is not to be used.

GAV Command

This command searches the entire
of entries the user has specified and presents the data on the user's

corbined Cictionary for whatever types

SYSOUT.

— T - - 1
!OperationlOpetand 1
i 4 _.,
¥ T

|GAV | [TYPE={ SYN|DEF |CSW}] |
L L - y]
TYPE

jdentifies the type of search.

Specified as:
bol Words).

system Default:

Functional Description:

SYN (Synonyms), DEF (Defaults), or CSW (Command Sym-

All three types will be processed.

The Combined Dictionay will ke searched

for the type of entry specified. If TYPE is defaulted, a search
will be performed for all three types. Output will be presented at
the user's SYSOUT in the form *TERM VALUE®' for synonyms and
defaults; for command symbol words, only the names will be listed,

though the kind

168

of CSW will

be indicated by the header.

Examples: If SYNONYM B = BARB and SET A = 8 had been previously
entexr during the task, and no other synonyms or command symbol

words exist for this task, then;

User: gav syn i
System: *#*SYNONYMS#¢*
B BARB
User: gav Csw
System: **#*INTEGER CSWORDS#*%#¢
A

GDV Command

This command will list on the user®s SYSOUT the default value associated
with a specified term.

r T H
{OperationjoOperand i
b + !
| GDV |DFLT = term |
L ’ 8 d
DFLT

is the term which is to be searched for.

Specified as: 1-8 character name.

Default: None

Functional Description: The user's Combined Dictionary will be
searched for the specified term. If this term is found, its cur-
rent default value will ke listed. If not, the message "THERE IS
NO DEFAULT" will be issued.

Example;

User: default base = 150
User: gdv base

System: 150

GO Comrmand

This cormand resumes execution of a previously interrupted object pro-
gram (or command).

1 3 L
{Operation|Operand
b 4

r T
GO I
L L

h—--iL-—-‘

Note: There are no operands.

Functional Description: GO gives control to the most recently inter-
rupted object program or command. When GO is followed by other commands
in a command statement, the succeeding commands are ignored after GO is
executed. '

The GO command issues a message stating the location at which execution
continues.

Caution: 1In a dynamic statement, GO is meaningless; a diagnostic mes-

sage is issued. In an immediate statement, GO must appear last, because
the comrmands following are ignored; no diagnostic message is issued.

Part III: OCommand LCescriptions 169

Programming Notes: GO is meaningful when it follows an attention inter-
ruption or after PCS has been used to STIOP execution. Ctherwise, the
command is canceled.

Example: In executing his program ABC, the user wants to interrupt
execution and modify his program.

User: call abc

The system invokes ABC.

User: (presses ATTENTION key)
System: '
User: set 5r=6;go

The system resumes executing ABC from the point of interruption.

GOTO Command

The GOTO command provides the ability to branch forward in PROCDEFs.

T R k|
Operation|Operand
! P ! P

b comr o coaeme

L2 T
] GOTO |{command}OUT]'comment'}
L 1

command | * ccmment *
specifies the command statement to which control is to be passed.

specified as: a command nameé Or comment no longer than 8 charac-
ters beginning immediately after the underscore or semicolon of the
destination statement.

ouT
specifies that an immediate return to the calling procdef is to be

made.

Functional Description: The GOTO command is to be used to branch
forward in a PROCDEF or nest of PROCDEF's. The GOTO command rou-
tine searches the source list until 1) the destination is found or
2) the end of the PROCCDEF is encountered or 3) the end of the nest
of PROCDEF's is encountered. In case 2, if the destination was OUT
the search stops and return is made as if the PROCDEF had conpleted
normally. If the destination was not 0U1, the search ocontinues un-
til case 1 or 3 ocaurs. If 3) occurs, control is returned to the
command system.

Programming Notes: The destination operand is to be specified as
command name or as 'comment‘’. The command or comment must begin in
the first column of the PROCDEF line or immediately after a semico-
lon if multiple commands per line are used. The destination
operand may also be specified as input to the procdef - i.e., GOTO
$command or GOTO *$camment®. In addition, if GOTO OUT is speci-
fied, control will be returned to the program calling the PRCOCDEF
(the command system or another PROCDEF) as if the PROCDEF had com-~
pleted normally. If the command or comment cannot be found within
the PROCDEF in which the GCTO exists (except for OUT as abovel,
control will be returned to the command system. Note that the com-
mand or comment must be local to the GOTO or in a higher level PRO-
CDEF, i.e., you cannot *GOTO" a command or comrant in a lower level
PROCDEF. The GOTO command may be used as the “opject command in an
IF statement.

170

Examples:

The user enters the following PROCDEFS:

User: procdef samplel
Sys,User: 0000100 param $1

-

0000200 display 'begin samplel’
0000300 if *$1°'='3";goto ‘call’

0000400 if "$1°='1
0000500 if *$1°=°"2
0000600 goto out

*;goto 'label’
* ;goto display

0000700 *label® display °one‘;goto *call®;display 'two'
0000800 ®call' sample2 $1

0000900 display 'r
0001000 _end

H procdef sample2
Sys,User: 0000100 param $1
0000200 if *$1'="3

eturn from sample2®

*;goto 'label’

0000300 if '$1°=°2";goto 'two’
0000400 display ‘'error in input for samgle2"’

0000500 goto xxx
0000600 *label’ 4di
0000700 goto out

splay ‘'sample2-three’

0000800 *‘two' display ®"sample2-two’

0000900 _end

If the PROCDEFs specified above we
the outputs would be:

1. User samplel 1
System: BEGIN SAMPLE1l
ONE

ERROR IN INPUT FOR S

The GOTO xxx Statement in sample2
a return to PROCDEF samplel.

2. User: samplel 2
System: BEGIN SAMPLEl
TWQ

SAMPLE2-TWO
RETURN FRCM SAMPLE2

The GOTO display in samplel will n
*one' because "display" does not
line.

3. User: samplel 3
System: BEGIN SAMPLE1L
SAMPLE2-THREE
RETURN FROM SAMPLE2

GOTO '"label' in sample2 does not ¢
Also GOTO out in sample2 causes a

User: samplel x
System: BEGIN SAMPLEL

re issued with the following inputs,

AMPLE2

causes an exit from all PROCDEFs, not

ot cause a branch to °LABEL' display

begin in the 1st column of the command

ause a branch tc '"label’ in samplel.
return to the samplel PROCDEF.

GOTO OUT in samplel causes an exit from the PROCDEF.

part IIXI: Command Cescriptions 171

GSV Command

This command will list the synonym value associated with a specified
term, or all terms associated with a specified synonym value.

-

| ¥ b
operation|Operand
|
¢ $ ————]
jGsv |NAME = value or term {,SEARCE={T|V}] 1
i 1 .

NAME
identifies the value or term which is to be searched for in the

user's Combined Dictionary.

specified as: if a term is specified - a 1-8 character name. If a
value is specified, a 1-244 character mnare.

SEARCH
jdentifies the type of search that is to be performed.

specified as: T or V

system default; V

Functional Description: If SEARCH=T, the Corbined Dictionary will
be searched for the specified term. If the term is found, the
value for the term will be listed on the user®s SYSCUT. If SEARCH=
Vv, or if SEARCH is def aulted, the entire Combined Dictionary will
be searched for all terms associated with the specified value. The
term(s) and value will be presented on the user 's SYSCUT.

Programming notes: To avoid confusion between 'term’ and *value'
—— remember that synonyms are entered in this manner:

SYNONYM term = value.

Examples: If SYNONYM L = LIST had been entered previously, then:

User: gsv 1, t
System: LIST

OR
User: gsv list
System: L list

HASM Command

This cormand causes the OS ASM H Program product to be invoked using the
Program Product Language Interface.

— T h
| eration|Operand]
1 1

| 3 v - - '|
| BASM |NAME=module name[,OSOPTS=(opt1,opt2,...)} {
i | [,SOURCEDS=sourcedsname] |
L L y

NAME
jdentifies the name ky which the object program will te known to
TssS. It consists of one to eight alphameric cunaracters, the first
of which is alphabetic. If the SOURCEDS option is not specified,

172

there must exist a dataset called SOURCE.name which is assumed to
be the source program to be compiled.

OSOPTS

DECK

specifies a list of 0S options to be in effect during the
compilation.

Each of these options has a standard or default value which is used
for the assembly if you do not specify an alternative value.

The option list mast not be longer than 100 characters, including
the separating commas. You may specify the options in any order.
If contradictory options are used (for exarmple, LIST and NOL IST),
the rightmost option (in this case, NOLI ST) is used.

The assembler options are:

(DECK | NOCECK] [,OBJECT|NOOBJECT] [,LIST|NOLIST]

[,TESTlNOTEST] [,'XREF(FULL!SHORT)’lNOXREF]

[,’LINECOUNT(nn)'] { ,ALIGN] NOALIGN] {,RENT | NORENT]

{,ESD|NOESD] [,RLD] NCRLD] { ,BATCH| NOBATCH]

[," SYSPARM(string) ,FIAG(nnn)"*]

text cards are written to the LOAD.wmodule dataset in preparation
for object deck conversion.

OBJECT

Note:

text cards are placed in the dataset specified as PUNCH.module.

The OBJECT and DECK options are independent of each other. Both

or neither can be specified, but only the output of LECK is used for
conversion toc a TSS formatted module.

ESD
the assembler produces the External Symbol Cictionary as part of
the listing.

RLD
the assembler produces the Relocation Dictionary as part of the
listing.

BATCH
the assembler will do multiple assemblies under the control of a
single set of job control language cards.

LIST
an assembler listing is produced. Note that the NCLIST option
overrides the ESD, RLD, and XREF options.

TEST
the object module contains the special source symbol table required
by the test translator (TESTRAN) routine.

XREF (FULL)

the assembler listing will contain a cross reference table of all
symbols used in the assembly. This includes symbols that are de-
fined but never referenced. The assembler listing will also con-
tain a cross reference table of literals used in the assembly.

Part IIX: Command Descriptions 173

XREF (SHORT)
the assembler listing will contain a cross reference table of all

symbols that are referenced in the assembly. Any symbols defined
but not referenced are not included in the table. The assemkler
listing will also contain a cross reference table of literals used

in the assembly.

RENT
the assembler checks for a possible coding violation of program

reenterability.

LINECOUNT (nn)
the number of lines to be printed between headings in the listing

Iy

is nn. The permissible range is 1 to 99 lines.

NOALIGN
the assembler suppresses the diagnostic message *IEV033 ALIGKMENT
ERROR" if fixed point, floating-point, or logical data referenced
by an instruction operand is not aligned on the propexr boundary.
The message will be produced, however, for references to instruc-
tions that are not aligned on the proper (halfword) boundary or for
data boundary viclations for privileged instructions such as IPSW.
pc, Ds, DxD, or CXD constants, nusually causing alignment, are not
aligned.

ALIGN
the assembler does not suppress the alignment error diagnostic mes-

sage; all alignment errors are diagnosed.

FLAG (nnn)
error diagnostic messages below severity code nnn will not appear
in the listing.Diagnostic messages can have severity codes of 0, 4,
g, 12, 16, or 20 (0 is the least severe). MNOTEs can have a
severity code of 0 through 255.

For example, FLAG (8) will suppress messages for severity codes 0
through 7.

SYSPARM (string)
*gstring' is the value of the system variable symbol &SYSPARM. The
assembler uses §&SYSPARM as a read-only SETC variable. If no value
is specified for the SYSPARM option, §SYSPARM will be a null
(empty) character string. The function of §SYSPARM is explained
inthe Assembler H language Specifications and in 08/VS and DOS/VS

Assembler language.

You cannot specify a SYSPARM value longer than 56 characters. Two
quotes are needed to represent a single quote, and two amper sands
to represent a single ampersand.

SYSPARM ((&§AM,"*EO).FY)
assigns the following value to §SYSPARM:

(ERM,*BO).FY.
Any parentheses inside the string must be paired.
Note: Even though the formats of some of the options previously sup-
ported by Assembler H have been changed, you can use the old formats for
the following options: ALGN (now ALIGN) , NOALGN (NOALIGN), LINECKRT=nn

(LINECOUNT (nn}), LOAD (OBJECT) , NOLOAD (NOOBJECT) . MOLT (BATCH), NOMULT
(NOBATCH), XREF (XREF(FULL)), MSGLEVEL=nnn (FIAG(nnn)).

174

Default Options: If you do not code an option, the assembler
assumes a default option. The following default options are in-
cluded when Assembler H is shipped by IBM:

{ DECK ,NOOBJECT,LIST,NOTEST," XREF(FULL),LINECOUNT(SS)',ALIGN,LOBBTCH
'SYSPARM() FLAG(0)")

However, these may not be the default options in effect in your
installation. The defaults can be respecified when Assembler H is
installed. For example, NODECK can be made the default in place of
DECK. Also, a default option can be specified during installation
so that you cannot override it.

For further information, please refer to the OS Assembler B Pro-
grammer's Guide.

SOURCEDS
specifies the name of the input dataset if SOURCE.module is not
used.

Functional Description: HASM will invoke the ASM H program product.
The interface routine invoked by the HASM command will filedef all re-
quired datasets. PPLI will allow processing of a TSS region dataset in
place of a VP dataset (PO in OS/Vs terms). The filedefs may be overri-
den by issuing the appropriate filedef commands before entering HASM.

One of the ocutputs of the HASM process will be a LOAD.name dataset.
This dataset will be input to the okject deck converter (CESHR), which
will convert it to a TSS loadable module. Additional output is a LIST.
name dataset which may be printed at the user's discretion.

IF Command

This command, included in a command statement, specifies a condition
that must be satisfied if the remaining commands in the statement are to
be executed. IF can be combined with any other cormand or commands in a
conditional statement to designate any valid condition.

~ T h |
|Operation|Operand 1
L 4 J
L 3 L .)
|IF |condition |
L L 3
condition

specifies a condition that must be true to allow execution of com—
mands that follow the IF command in the conditional statement.

Specified as: a logical expression.

Functional Description: If the command statement containing the IF com-
mand is a dynamic statement, the logical expression is evaluated only
when the instruction locations specified in the AT command are reached.
The counter associated with each dynamic statement containing an AT com-
mand, referred to by the special character %, is incremented by one when
the specified instruction location is reached, whether or not the IF
condition is true. (See "Types of Operand Specification® in Section 3
of pPart II.) When more than one IF command arpears in the same condi-
tional statement, the commands in the statement are executed from left
to right until an IF that specifies an unsatisfied condition is encoun-
tered, or the end of the statement is reached. For example:

if X<0;display X;if ¥<0;display Y

Part III: Command Descriptions 175

X will be displayed whenever X is less than 0, but Y will be displayed
only when both X and Y are less than O.

Programming Notes: An IF command may stand alone, but it performs no
useful purpose. If the condition is true, there are no further actions
to be performed. If the condition is false, the remainder of the state-
ment is ignored. In either case, the results appear to be the sarne.

The dynamic statement counter (%) can be used in forming a logical ex-
pression for the IF command. The counter may be used to control the
frequency at which, or the interval through which, the statement con-
taining IF is effective. In statements other than dynamic statements,
the counter has a constant value of 1.

Examples:

1. The user wants to test a logical condition and, if that condition
is true, to issue other program control commands. The condition is
true cnly when the value of his internal symbol variable PGM.NUM is
less than or equal to 14.

User: if pgm.num <=14;display pcm

The system evaluates the logical expression and executes DISPIAY
only if the condition is true.

2. fThe user wants to execute more PCS commands every fifth time.
User: at p.x;if % = (%/5)#*5;

The statement is not evaluated at this time. The system assigns a
nurber to the dynamic statement.

INSERT Corrand

This command places the data lines entered at tne terrinal in the cur-
rent region.

- —— T 1
QOPeratlon|09erand |
e g — ‘ - a
| INSERT | IN1=starting linel [,INCR=increment] |
L L - 4

N1
identifies the line that is to be the first line or that is to pre-

cede data lines that are to be inserted in the current region or
data set.

specified as: a one~ to seven-digit decimal line numker that may
be absolute or relative.

LAST - last line in the current region.

systern_default: the value of the CLP.

INCR
specifies the value by which line pumbers assigned to the new data
lines are incremented. The value of N1 is the base against which

the line mumbers are incremented.

specified as: from one to seven decimal digits. Bn all-zero in-
crement is not allowed.

176

Lo,

system default: 100.

Functional Description: If N1 (the CLP, if N1 is defaulted) does not
exist, the first line is inserted at Nl. The increment is then added
for all subsequent lines inserted. If N1 exists, the first line is
inserted at N1 plus the value of INCR. If this line also exists, the
command is canceled. When inserting lines between two existing lines,
the insertions are made until a new line would overlay an existing line
or until the new line is greater than the limiting line. When either of
these situations occurs, the command is canceled.

INSERT prompts the user with line numbers for his insertions. Each time
the RETURN key is pressed, a line number incremented by the value of
INCR is issued. To terminate INSERT processing, enter a command pre-
ceded by a break character. The CLP is set to the last line entered
plus the value of INCR. If adding INCR to the last line entered exceeds
the next existing line, CLP is set to the next existing line. If no
data lines are entered, the CLP is set to Nl.

caution: INSERT does not overlay an existing line with a new line. A
langquage-processing command (EDIT, PROCDEF, or PLI) must be issued be-
fore the command is issued.

Programming Notes: INSERT is provided for consecutive insertions.
UPDATE should be used for the insertion of arbitrary line numbers.

Examples:
1. The user wants to insert data lines, in increments of 10, following
line 600.
User: insert 600,10

Syster: 0000610

Note: Assuming that line 700 is the next existing line number af-
ter line 600, nine lines can be inserted.

2. The user wants to insert lines in the data set 10 lines beyond the
CLP, with an increment of 100. The CLP is line 500.

User: insert nl1=+10

System: 0001500
3. The user wants to add lines to the end of an existing data set.
User: insert last

The system prompts with the last line number plus the value of
INCR.

4. The user wants to generate a region with a blank name in a new
region data set.

User: default regsize=§
edit myds

Sys,User: insert

System: 0000100

Note: The REGION command must be issued to generate a region with
a blank name in an existing region data set. EDIT automatically
positions the CLP to the first region in an existing data set, and
INSERT, without operands, assumes this value for the CLP.

Part III: Corrand LCescriptions 177

JOBLIBS Command

This command gives the user the ability to move any one of his JOBLIBs
to the logical top of the JCBLIB chain. '

T

operation|Operand
1

J

SSEIPS S—

|
F +
| JOBLIBS |DDNAME=data definition name
L 1

DDNAME
specifies the DDNAME of the DDEF used to define the JOBLIB to be
moved to the top of the JCBLIE chain. If defaulted, a diagnostic
js issued and the command is canceled.

Functional Description: Used to move the specified JOBLIB and its asso-
ciated DCBE from its present position in the chain to the logical top of

the chain. This positioning is important when the loader and campilers

retrieve or store modules.

Example: The user wants to store the next object program he assernbles
in the data set LIB1, which he defined as a JOBLIB earlier in his termi-
nal session. LIB1 has a DDNAME of Al and currently is not the top JCB-
LIB in the chain. The user enters:

User: Jjoblibs al

The system moves the data set LIB1 to the top of the JOBLIB chain.

K, XA, and KB Commands

These commands transfer control from the 1056 card Reader to the attach-
ed 1052 Printer-Keyboard. The KA and KB commzads also control the
user's input character set.

r . T]
| operation|Operand]
I i o |
1) T 1
I K | |
L L ¥
| S k] 1
| operation|Operand |
b t - i
| KA] |
L L P |
r . T - - Al
| OperationjoOperand |
L 'S - o
Ll 1
| KB | |
L L 3
Note: These commands have no operands.

Funct ional Description: The K, KA, and KB cormands indicate to the sys-
tem that input will come from the user’s 1052 Printer-Keyboard. To use
these commands, the user can include a K, KA, or KB card in his card
deck in the 1056 Card Reader; when the system reads this card, control
will return to the attached 1052 Printer-Keyboard. The user can also
use the KA and KB commands to change the input character set while he is
enter ing commands from a terminal. The commandc Ffunction as follows:

178

K -- transfer control from the 1056 Card Reader to the attached
1052 Printer-Keyboard. If the card reader mode was CA, the
terminal mode is KA; if the card reader mode was CB, the ter-
minal mode is KB.

KA -- transfer control to the printer-keyboard and use the full
EBCDIC character set (that is, uppercase and lowercase charac-
ters are used as such; no folding takes place).

KB -~ transfer control to the printer-Kkeyboard and use the folded
EBCDIC character set (see below).

The input character set is determined by the value of the ALPHABET
operand: when the user first logs on to the system or enters the KB
command, the ALPHABET=1, which indicates that the folded character set
is used for input. When the user enters the KA cormand, ALPHABET=2, and
the full EBCDIC character set is used. In the folded mode, lowercase
letters are converted to their uppercase equivalents. In the full or
=unfolded"™ mode, lowercase letters are not converted; they are used as
they are entered. 1In either mode, the special characters, , ", !, a,
#, and § are valid alphabetic characters. They are never folded. Note
that system-supplied commands are coded in uppercase letters. If the
user is in KA mode, he must shift to upper-case to execute these
commands .

The values set with the KA and KB commands are in effect only for the
duration of the user's task; however, if a PROFILE command is entered,
following a KA or KB in the same task, the values are in effect for sub-
sequent tasks until the value is changed. For example, if the user is
in KB mode and enters the KA command, he will be in KA mode only for the
duration of the task. When he logs on again he will be back in KB mode,
1f, however, he entered a PROFILE command later in the same task, he
will be in KA mode when he logs on for subseguent tasks. (See the de-
scription of the PROFILE command in Section 6 of Part II.)

Examples:

1. The user wants to have the system take input from the 1052 Printer-
Keyboard when the last card is read from the 1056 Card Reader (see
C, CA, and CB Commands). To do this, the user includes a K, KA, or
KB card as the last card in his input deck. When the system reads
this card, it goes to the 1052 Printer-Keybocard for input.

2. The user wants to change his input character set from folded mode
to unfolded mode. He is already entering input from the terminal.

User: KA
The system accepts input in full ERCDIC mode.

KEYWORD Conmand

This command displays command names, and their operands, from the user's
command library -- USERLIB(SYSPRO) or from the system's command library
-— SYSLIB{(SYSPRO).

L R Ll A
joperation|Operand |
5 + —
| KEYWORD | [PROCNAME=command name] |
L L 3
PROCNAME

specifies a command name for which the user wants the operands

displayed.

Part III: Conrmand Descriptions 179

specified as: a valid command name.

system default: all commands and operands are displayed frow the
user 's command library -- USERLIB (SYSPRO).

Functional Description: The KEYWORD command displays command names and
their associated operands from the user's command library. 1t displays
the conmmand name, all the parameters included on the PARAM iine of a
PROCDEF, or all the keywords defined in the BPKD macro instruction for a
BUILTIN-defined comnmand. If the user does not include a command name as
the operand of the KEYWORD command, all the conmand names and their
operands are displayed from the SYSPRO member of the user's USERLIB data
set. If the user specifies a command name that does not exist, a diag-
nostic is issued and the command is canceled.

programming Notes: The KEYWORD command also displays command names and
operands from the system command library -- SYSLIB{SYSPRO). If you
enter a command name as the operand of the KEYWORD cowmand, the system
first searches USERLIB for the command. If the command is not there,
the system searches its own command library {(in SYSLIB). However, sone
system commands are not displayed. You are not able to use some of the
displayed parameters because either they are not pernitted to your pri-
vilege class or they are dummy parameters used for system processing
only. Also, some commands (SYNONYM, DEFAULT, and the PCS commands) do
not use the system's parameter processing facilities; the parameters for
these commands are seen only by the associated command processing rou-
tines. When you enter oneé of these commands as the operand of the KEY-
WORD comrmand, the system does not display any parameters. {(In these
cases, consult this manual for operand Specificationsm)

Examples:

1. The user wants to display all commands and operands from his com-
mand library:

yser: keyword

The system displays the command names and operands from the usexr's
USERLIB (SYSPRO data set.)

2. The user wants to see the operands for the FRAMIS command:

User: keyword framis

Pruintie -

System: FRAMIS, PARAML, PARAM2 , PARAM3

LINE? Command

This command presents one or more lines from a line data set to 5YSOUT .

— T - - : 1

10peration10perand |
v

+ e

| LINE? |pDsNaME=data set nane [(member name)] !

| |1,1{1line nunber| (£irst 1ine number,last line pumber)¥i, «..31 |
L i 3

DSNAME
jdentifies a line data set that must be defined ky a DDEF cormand
within the current task or must be cataloged.

specified as: a fully qualified data set name and (optionally) the
member name of a VPAM data set. When specified, the membexr name
must be enclosed in parentheses, immediately following the data set
name .

180

line number ‘
jdentifies a single line to be displayed from the specified data

set.

specified as: a one- to seven-digit decimal number.

System default: if the "first line number, last line number®
operand is specified, that range of lines is displayed. Otherwise,
entire contents of data set are displayed.

first line mumber,last line numker
jdentifies a range of lines to be displayed.

specified as: two cne- to seven-digit decimal numbers, separated
by a comma and enclosed in parentheses.

System default: if the "line number® operand is specified, that
Iine is displayed; otherwise, the entire contents of the data set
are displayed.

Funct ional Description: When the user specifies a line number or a
first line number that does not exist but is within the kounds of the
data set, the next-higher line is presented.

If the user specifies a range of line numbers that in some way overlaps
the boundaries of the data set, all lines in the data set within the
specified range are presented. 1If the range overlaps the end of the
data set, the user is informed when the end of the data set is reached.

The format of ocutput for line data set is as follows:

Position Contents
1-7 line number
8 blank if line was created from terminal keyboard;

¢ if line was created fror card reader
9 text

The format of output for language processor listing data set is as
follows:

Position Contents
1-130 text (record positions 2 through 131)

Ccaution: 1In the specification of a range of line numkers, the first
1ine number must be less than or equal to the last line numker. A maxi-
mum of 10 line-number ranges may be specified in a single execution of
the LINE? command.

Programming Notes: In conversational mode, the user can temminate the
presentaticn at any point ky pressing his ATTENTION key.

The user can present lines only from a data set that belongs to him or
that he is now sharing. He may request the lines in any numerical
sequence.

Exarples:

1. The user wants lines 800 through 1100 and line 1400 of data set
NAM3 to be presented.

User: line? nam3,(800,1100),1400

Part III: Conmrand Descriptions 181

The system presents the specified lines.

The user wants lines 900 through 2400 and lines 4400 through 16000
of member AB1 of data set REPLAY to be presented.

User: line? teplay(ahl),(900)2“00),(ﬂu00,16000)

The system presents the specified lines.

The user wants his entire data set, LIST.PLAYER, toO be presented.

User: 1line? list.player

The system presents contents of the data set.

LIST Command

This command displays a line, or range of lines, or the value of the CLP
at the user's terminal or SYSOUT.

| Sl L n
|Operation|Operand |
k 1 -4
jLIST | INLl={starting position|CcLP}] (,N2=ending positionl |
l l[,CHAR={C|H|M}] ,'

&

N2

182

jdentifies the line, or first of a range of lines, or the value of
the CLP in the current region to be displayed.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

IAST - last line in the current region.
CLP - value of current line pointer.

Note: 1If the user wants to start the listing at a character posi-
tion other than the first (position 1) position of data in the
specified line, he can specify the starting position as an aksolute
one- to four-digit decimal number, enclosed in parentheses and im-
mediately following the line number.

system default: when N2 is specified, the value of the CLP is
assumed. Otherwise, the entire data set is listed, including rec-

ord keys.

jdentifies the last line in a range of lines of the current region
to be displayed.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative. :

LAST - last line in the current region.

Note: If the user wants to end the listing at any character posi-
tion other than the last in the specified line, he can specify the
ending position as an absolute one- to four-digit decimal nunber,
enclosed in parentheses and inrmediately following the line number.
This ending character is included in the disrlay.

systemr default: when N1 is specified, it is the only line listed.
Otherwise, the entire data set is listed.

CHAR
specifies type of output.

Specified as:

C - character.
H - hex.
M - mixed.

systep default: C.

Functional Description: LIST displays entire lines or the specified
portions of lines. If LINENO=Y, region names and line numbers are in-
cluded. If character positions other than the first or last positions
are specified for N1 or N2, these positions apply to all lines in the
specified range. After LIST is executed, the CLP is set to the next
line number after N2. If N2 is the last line of the data set, the CLP
is set to N2 plus the value of INCR. The user is then prompted for a
command.

The mode of the output data is determined by the CHERR operand in the
LIST command:

CHAR=C - all printable characters are displayed in character nota-
tion; unprintable characters are ignored.

CHAR=H - the line is displayed in hexadecimal notation.

CHAR=M - all printable characters are displayed in character nota-
tion; unprintable characters are displayed in hexadecimal
notation, and are underlined.

Caution: A language-processing command (EDIT, PROCDEF, or PLI) must be
invoked before the command is issued.

If CHAR=M, and if the user has altered his output translation table, the
results of the display are unpredictable.

Examples: The user has previously issued a REGION command to create the
following data set:

User: region anyregn
Sys,User: 0000100 line 1
0000200 line 2
0000300 line 3

1. Assuming the CLP is 400, the user can issue any of these LIST com-
mands to display the entire data set.

User: list 100,300
or
list -3,1last
or
list -5,+1

(Note: When N1 and N2 exceed the limits of the data set, the low-
est and highest line numbers in the data set are assumed. Refer to
»line number specification®™ in the list of general terms in Section
2 of Part II.)

Syster: ANYREGNO000100 LINE 1
ANYREGN0000200 LINE 2

Part III: Command Descriptions 183

ANYREGNOO000300 LINE 3

Display positions 2 through 4 of the data in lines 200 through 300.

User: list 200(2),300(4) .
System: INE
INE

Display the value of the CLP.

User: list clp
Systerr: 0000400

List the first and second characters of data in line 100.

User: list 100(1),100(2)
Systerm: LI

LL Comrmand

The LL comrand is used to define the maximum length of any line to be
written to the SYSOUT.

r T
|Operationj|Operand
L i

O ke

L T

| LL | LGH=,*TRUNCATE=, #RESET=

4 1

LGH
decimal number, 1 or greater, defining the l:ngth of the ouput line
which can be written to the SYSOUT. Any lir: greater in length,
will be continued on the next line.
specified as: A decimal number from 1 to maximum physical line
length for SYSOUT.
System default:-
2741 -- 132
Teletype -- 72
3215/1052-7 -- 132

*TRUNCATE
self -defining keyword. If TRUNCATE=Y is specified, then any output
line greater than the specified 'LGH' value will not be continued
on the next line. Any text in excess of the above LGH value will
be deleted and not displayed.
Specified as:
Y = truncate output.
N = dc not truncate output.
Systen Default: N

*RESET

184

(see specification below)

Specified as:
Y = restore the original system default length and turn off trunc-
ate, if on.

N = nc effect.

System Default: N

Functional Description: The 1L command can be used to lengthen and
shorten the messages and data displayed by the system. On long lines,
the user can also have the system delete any data over a specified
length instead of writing continuation lines on the terminal.

The system defines a line as all output from one write request and not
containing either a 'Newline' or a 'Carriage Return, Suppress®’ control
character.

If the data contains a ®"Newline' control character, then the system will
treat each "Newline®' character as the end of one line of output and will
write the data that follows on the next line.

LNK Command

This command invokes the linkage editor to link-edit one or more okject
modules.

r T 1
|OperationjOperand |
L 1 —— 4
1 3 T 1
LNK	NAME=module name (,STCRED=(Y	N}]	
	{,LIB=data definition name of libraryl		
	[,VERID=version identificationli,TSD=(Y	N}][,PMDLIST=(Y	N}]
	{,LISTDS={Y	N}]([,LINCR=(first line number, increment)]	
L i i
NAME
identifies the object module to be created. If the source program,
consisting of the control statements that direct the linkage edi-
tor, is prestored, the user must have named it SOURCE.name.
If it is not prestored, the system automatically prefixes SOURCE.
to the source program module name. The listing data set will auto-
matically be named LIST.name (0).
Specified as: the part of the source program module name that fol-
lows SOURCE. if the source program is prestored. Otherwise, any
character string of from one to eight alphameric characters, the
first of which must be alphabetic, can be specified. The object
module name must not ke identical to other external entry points in
that library.
STORED
specifies whether or not the source program is prestored.
specified as:
Y - source program is prestored.
N - source program is not prestored.
System defanlt: N.
LIB

identifies the library in which the new object module is to be in-
cluded. The user must either choose a library that does not con-
tain any control section or entry point names identical to those in
the output module or must rename the control section and entry
point names in the output module during linkage editing.

Part III: Coamand Lescriptions 185

specified as: the data definition name of the library.

system default: the last-mentioned library is assumed (that is,
the user library or a jok libraryl.

VERID
specifies the version jdentification to be assigned to the okject
program.

specified as: from one to eight alphameric characters.

system default: the listing and the created modules are
time-stamped.

ISDb
specifies whether an internal symbol dictionary (ISD) is to ke
produced.

Specified as:

Y - ISD is produced.
N -~ ISC is not produced.

system default: ¥.

Note: An ISD can be produced only if the source mcdule contains an
1SD.

PMDLIST
specifies whether a program module dicticnary (PMD) listing is to
be produced.

specified as:

v - PMD listing is produced.
N - PMD listing is not produced.

syster default: N.

LISTDS
determines whether the user-requested listings from the language
processors are to be placed in a list data set or placed directly
on SYSOUT.

specified as:

Y - place in list data set.
N - listings to SYSOUT.

system default: Y.

LINCR
specifies the line number to be assigned to the first line of the
source language data set and the increment tao be arplied to suc-
ceeding line numbers.

specified as: two three- to seven-digit decimal numbers separated
by a comma and enclosed in parentheses. The last two digits in
each mumber must be zeros.

system default: {100,100).

186

Note: This operand is ignored when STORED=Y.

Functional Description: See "Language Processing,®™ in Section 3 of Part
II. ¢

Caution: The ocutput module from the linkage editor cannot be placed in
the library specified in the input operand if that library contains
modules whose control section or entry point names are identical to con-
trol section or entry point names in the output module.

The command is canceled if invalid operands are entered.

Exarple: The user wants to link-edit modules into an object module
named ABCD. Conversationally, he enters all LNK operands and linkage-
editor control statewents from the terminal. The linkage editor takes
default values for the remaining operands, which designate a starting
line number and increment of 100, the module tc be placed in the library
currently at the top of the user's program library list, the listing to
be time-stamped, an ISD, and no PMD listing.

User: 1nk abecd,n

LOAD Command

This command loads an object module, and all other object modules to
which that module implicitly refers, into virtual storage, but does not
initiate program execution.

¥ T 1
|Operation |Operand |
i i 3
¥ T 1
1LOAD 1!NAME=entry point namel !
NAME

identifies the module to be loaded.

specified as: a module name or external entry point without
offset.

System default: the last module referenced by the system is
loaded.

Functional Description: When the LOAD command is executed, the system
searches the libraries on the task's current program library list to
find the specified object module and loads the module. If the module is
already loaded, no action is taken. If that module is not implicitly
linked to other modules, no further loading takes place. If that module
is implicitly linked to one or more other modules, those modules, and
any other modules to which they are implicitly linked, are loaded by a
similar search-and-allocate procedure. When a module to be loaded can-
not be found, a diagnostic message is issued.

When the LOAD command is issued with no operands, the user's module last
referenced by one of the following commands is loaded: PLI, ASM, LNK,
FTN, LOAD, UNLOAD, CALL with a module name specified, or an implicit
call to a module.

In the case of FORTRAN-written programs, a LOALC command specifying the

main (or root) program causes the entire program to be loaded, because
all FORTRAN subprogram modules are implicitly linked to the main module.

Part IIX: Conmwrand Descriptions 187

Assembler-written modules can be implicitly or explicitly linked to oth-
er modules. Explicitly linked object modules (for example, explicitly
called or loaded subroutines of a program's main module) are not loaded
- when a LOAD command is executed; they are loaded one at a time during

. execution as each explicit linkage is processed.

Caution: A FORTRAN COMMON block program must be loaded by module name,
not COMMON block name, Lecause only the module name can be found by the
dynamic loader. '

Example: Load module RBC, and all modules to which it implicitly
refers.

User: load abc
The system loads ABC and all implicitly linked modules into virtual

storage.

LOCATE Command

This command searches a region for a specified character string. LOCATE
does not alter the referenced data. o :

. M .
jOperation|Operand
b L

bt come o cnlins oo, eud

1 1 T

j LOCATE. | (N1=starting positionl[,N2=ending positionl
|
i

| [,STRING=character stringl
P - .

N1 .
identifies-a line, or the first of a series of lines, in the cur-
rent region to be searched for STRING.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative. - :

LAST -- last line in the current region.

Note: If the user wants to start the search at a character posi-
tion other than the first character of the record®s key (position
. K), he can specify the starting position enclcsed in parentheses,
and irmediately following the line number. The system normally
begins the search with position K (the first character of tne key);
the first character of data is at positicn-1 and is specified as
(1) following the line numker. If the user wants to get to some
_other data character, he can specify its position as an absolute
_one- to four-digit decimal number. Any character between the first
character of the key and the first data character can be referred
‘to by a negative value enclosed in the parentheses. For exarmple,
the second character in the key for line 0000100 of a line data set
is referred to as 100(-6). : :

System default: when N2 is specified, the value of the CLP is
assumed. Otherwise, the entire data set or region is searched.’

N2 g ’ :
identifies the last of a series of lines to be searched for STRING.

specified as: a one- to seven-digit decimal line number that may
"be absolute or relative.

188

LAST -- last line in the current region.

Note: If the user wants to end the search at any character posi-

tion other than the last in the specified line, he can specify the
ending position as an absolute one- to four-digit decimal nunber,

enclosed in parentheses and immediately following the line nurber.
The ending character is included the command processing.

system default: when N1 is specified, it is the only line
searched. Otherwise, the entire data set or region is searched.

STRING
designates the character string that is to be searched for (that

is, the string is the "search argument”). Strings that are con-
tinued in the next line are not recognized.

specified as: a normal or guoted string.

system default: CLP is set to the next line in the current data
set or region. If N2 is the last line, CLP is set to N2 plus the
value of INCR.

Functional Description: LCCATE searches the specified lines for the
string (this search includes the region name and line number). When the
string is found, the first line containing it is displayed and the CLP
is set to that line number. Wwhen the string is not found, or LOCATE is
issued without operands, the CLP is set to the line following the last
line in the range specified (N2). If N2 is the last line, CLP is set to
N2 plus the value of INCR.

The user is then prompted for a command.

caution: A language-processing comrand (EDIT, PROCLEF, or PLI) must ke
invoked before the command is issued.

Examples:

1. The user wants to search the current region for the string ABC.
{Note: A blank separates the last letter in LOCATE and the corma.)

User: locate ,,'abc’

System: 0000200 ABC WILL APPEAR IN SEVERAL LINES

2. The user wants to search lines 200 through 500.

User: locate 200,500,akc

System: 0000200 ABC WILL AFPEAR IN SEVERAL LINES

3. The user restricts the search in example 2 to character positions 1
through 26 in lines 200 through 500, The system displays the phys-
ical line in which ABC is first found and prompts for a command.
The LOCATE command the user enters is:

User: locate 200(3),500(26) ,abc

LOGOFF Command

This command notifies the system that the user wants to end his task.

Part III: Command LCescriptions 189

L] v
| Operation |Operand
L S

S

L 8 14
|LOGOFF |
L i

Note: There are no operands. .

Functional Description: LCGOFF removes the user's task from the system
and releases any data definitions (and I/0 devices) used by the task.

When LOGOFF is given in a nonconversational task, an automatic PRINT is
issued by the system for the SYSOUT data set.

Programming Notes: If no LOGOFF appears at the end of a nonconversa-
tional task, a diagnostic message is issued, and the task is terminated;
SYSOUT will be printed.

LOGON Command

This conmand validates the user to the system and creates the environ-
ment in which he may operate.

)

Operat10n|0perands |
- |

1 ¥

LOGO |user identificationl,passwordl[,addressingl{,charge number] |
|{,control section packingl {,maximum auxiliary storagel |

| {,pristinel [,user IVM codel |

Y ¥ |

P — v G o 2y

Notes: The LOGON command name must always be entered and operands must
be entered in positional notation. Trailing commas need not be entered.
If one or more operands is omitted, and a later operand is used, you
must enter a comma for each omitted operand. .

user identification
identifies the user to the system.

Specified as: the user identification assigned to the user when he
was joined to the system.

password
specifies the user’s assigned password.

Specified as: the passworé assigned to the user when he was joined
to the system.

system default: in conversational mode, ncne, if the user has been
assigned a password. In nonconversational mode, password is op-
tional and will not Le verified.

addressing
specifies the system addressing.

Specified as: 24- or 32-bit addressing.

System default: present system addressing.

charge number
specifies the charge number to be used if the installation has task
- accounting. This does not need to be the charge numker assigned
when the user was joined to the system.

Specified as: from one to eight alphameric ch=racters.

190

System default: the charge number assigned when the user was
joined to the system.

control section packing

specifies the type of control section packing to be provided by the
dynamic loader.

Specified as:

A - all control sections will be packed.
P - only prototype contrcl sections (PSECTs) will be packed.

O - only control sections having neither public nox prototype
attributes will be packed.

X - all control sections except prototype control sections will be
packed.

N - no control sections will be packed.

system default: N is assumed.

maximum auxiliary storage

specifies the expected maximum number of auxiliary storage pages
required in the session.

specified as: from one to five decimai digits.

System default: the lesser of either the system default establish-
ed at system generation or the limit assigned to the user when he
was joined.

pristine

user

indicates whether the user wants access to his previously defined
defaults, synonyms, and PROCDEFs or all options or his USERLIB.

Specified as:

P - the user will be akle to use only system-specified defaults,
synonyms, or PROCDEFs; he can create synonyns, defaults, and
PROCCEFs during this task, but he cannot add them to his pro-
file for use in a sukseguent task.

X - the user will ke akle to use only system-specified synonyms,
defaults, and PROCDEFs: he cannot access anything in his
USERLIB; he cannot create synonyms, defaults, or PROCDEFs,
unless he first defines USERLIB.

System default: the user will have all of his previously specified
defaults, synonyms, and PROCDEFs available to him, as well as all
other members of his USERLIB.

IVM code
indicates whether a user wishes to modify the contents of his user
IVM.

specified as:

Y - the user with U authority can modify the contents of his user
IVM with a new set of modules.
N - the user cannot modify his user IVM.

System default: N.

Part II1I: Conmmand Descriptions 191

Functional Description: The credentials the user enters (user identifi-
cation and any of the operands required by your installation) are com-
pared with the authorization data that identify him to the system. When
any or all are not valid, the conversational user is prompted to enter
all operands again. If the system responds with a question mark (?),
the LOGON command was not recognized; the entire cormand must be reen-
tered. When these credentials are valid, the task continues. LOGON
calls ZLOGON before control is given to the user.

Programming Notes: LOGCN must precede any commands the user intends to
issue. When the user turns on his terminal and dials the system, the
system waits for the user to log on.

If the user has never been authorized to use the system, or the user's
permit to use the system has been withdrawn (he has been "quit®), he
will be advised of this via a message, and his LOGON will be terminated.

Examples:

1. FRANKDOE dials up at his terminal; the system assumes that he wants
to begin a conversational task.

The system unlocks the terminal.
User: logon frankdoe,mars?
The system acknowledges that user has successfully logged on.

2. A nonconversational task is being started; the first prestored com-
rand in the nonconversational SYSIN data set is:

LOGON FRANKDOE

LTDS (List TAPE Datasets) Command

This command will list the dataset name, file sequence number, and vol-
ume sequence number of all datasets on a tape created by the VT command.

T
Operation| (No Operands)
L

TDS

e

h—-—L.—. o

|
k
|
L

-—+

Functional Description: The LTDS command can be used to list all data-
sets on a tape created by the VT command. The tape must be previously
defined by a ddef command with ddname of DDTVIN, and must be an unla-
belled 9 track tape. Processing of datasets will begin with the file
sequence number specified in the label operand of the ddef command and
continue until EOT is detected.

Example: The user wants to list all datasets on tape TESTXX starting at
file 2.

User: DDEF DDTVIN,PS,TESTDSN,VOLUME=(,TESTXX),UNIT=(TA,9).-
LABEL=(2,NL) ,DISP=0OLD
LTDS

System: VSN TESTXX,FSQ 0002.USERID*#*,DSFILE2

MCAST Command

This command alters the control characters in the user's Profile
Characdter Switch Table (see Appendix C).

192

1 3 T h
| Operation |Operand J
L L i
{MCAST ﬁEOB=end of tlock characterl([,CONT=continuation characterl |
} | [, CLP=break characterl, {
| | [, TRP=transient statement prefix character) }
{ | [,RCC=concatenation character]) |
{ | [,SSM=system scope mask]}[,USM=user scope maskl {
i | [,KC=keyboards/card reader character] {
| | [,RS=carriage return suppression character] |
| | [,CP=command prompt stringl j
L L

Note: All hexadecimal nmumkers must be enclosed in apostrophes and pre-

ceded by an X (as in X"62').

sSince no system-supplied default values exist for these operands, we
list the settings as they appear in the system-supplied version of the

user

EOB

CONT

CLP

RCC

SSM

profile.

specifies the end-of-block character.

specified as: X'26°'.

System default: X°26°'.

specifies the command system continuation character.

Specified as: any single character or any hexadecimal number

the range X'00*' to X'FF'.

System default: hyphen (X*60°).

specifies the command system break character.

Specified as: any single character or any hexadecimal numker

the range X'00* to X'FF'.

System default: underscore (X*6D°).

specifies the transient statement prefix character.

Specified as: any single character or any hexadecimal number

the range X'00" to X'FF'.

Systernr default: vertical stroke (x°U4F°).

specifies the concatenation character.

specified as: any single character or any hexadecimal numker

the range X*'00" to X'FF'.

‘System default: cclon (X*7a').

specifies the system scope mask.

Specified as: any single character

the range X'00" to X'FF°'.

Part III:

or any hexadecimal number

Cormand Lescriptions

in

in

193

System default: X'29°.

UsM
specifies the user scope mask.
Specified as: any single charécter or any hexadecimal number in
the range X'00* to X'FF'.
System default: X"29°'.

KC
specifies the SYSIN keyboard/card reader character.
specified as: the letter K, which tells the systerm to get input
from the terminal keykoard; or the letter E, which tells the system
to use the value of the SYSIN implicit operand. If SYSIN=K, input
is from the keyboard; if SYSIN=C, input is fror the card reader.
System default: E.

RS
specifies the carriage return suppression character.
Specified as: any single character or any hexadecimral numker in
the range X"00" to X°'FF°'.
Ssystem default: coclon (X'7A').

cp

specifies the command prompt stving.

specified as: a string of from one to eight characters, or a hexa-
decimal number in the range X'00° to X'FFFFFFFFFFFFFFFF' (16 hexa-
decimal digits).

System default: an underscore, backspace, and a carriage return
suppression character (X'6D167A').

Functional Description: The MCAST command replaces control characters
in the user's task profile with the control characters specified as com-
mand operands. If no operands are entered, only those control charac-
ters are changed for which the user has defined default values (for ex-
ample, DEFAULT CP=SIR).

To make these changes permanant, the user must follow the MCAST cormand
with a PROFILE command in the same task. ’

Note: All of the control characters for the MCAST cormand are explained
in Appendix C. Any unprintable hexadecimal values (for example, X'25')
are ignored when included in the command prompt string.

caution: Do not change the EOB character from the system-supplied value
X'26°'.

Examples:

1. ‘The user wants to change his command prompt string to *SIR?", and
his break character to the at sign (a):

User: mcast cp=sir?,clip=3

——

System: SIR?

2. The user wants to change the command prompt string to YES, and the
continuation character to un usterisk (*); he wa::s to make these
changes permanent in his user profile:

194

User: mcast cp=yes,cont=%*

Sys,User: YES profile

3. The user wants to change his command prompt string to the word GO,
underscored, and followed by a question mark (GO?). Since the
back- space character (see Appendix C) is a hexadecimal number
(X"16') with no printable value, the entire prompt string must ke
coded as a hexadecimal numkter.

User: mcast cp=x"c7d616166464d6f"
System: GO?

Note that: X*'C7' is a G; X'Dé6"' is an O; X°*16" is a backspace;
X*'6D"' is an underscore; and x'6f' is a question mark.

MCASTAB Command

This command alters the translation tables in the user's task profile by
replacing cne or both with the replacement tables located by the labels
SYSTRIN (for input) and SYSTROUT (for output).

L v
|Operation|Operand
i d

i‘-—dL_.‘

|MCASTAB | [INTRAN={N|Y}][,CUTRAN={N|Y}]
i L

INTRAN
specifies whether to replace the current input translation takle
with the replacement table (SYSTRIN) or with the version that was
current when the user logged on.

Specified as:

Y - replace with SYSTRIIM.
N - replace with version current at LOGON.

System default: N.

OUTRAN
specifies whether to replace the output translation tatle with the
replacement copy in SYSTROUT, or with the version that was current
when the user logged on.

Specified as:

Y - replace with SYSTROUT.
N - replace with version current at LOGON.

System defanlt: N.

Functional Description: MCASTAB replaces the input and output transla-
tion tables with the replacement versions located by the labels SYSTRIN
(for input) and SYSTROUT (for output). The user can alter the replace-
ment tables with the SET command; he can effect replacement with
MCASTAB.

To make a change in the inpuc translation table, the user alters the
replacement version:

set systrin.(x"cl’,1)=x'c2*
He specifies the location in the translation table of the character or

function code he wants to change (X°*Cl1l® in this case); then he sets the
location to the new value (X'C2*' imn this case). 1In this example, the

Part III: Cormmwand Descriptions 195

user has set the uppercase "A% to the value of "B". (Notice that the
values are not swapped; both "A® and "B® have the value of "B".) Now,
to make the change, the user issues the MCASTAB command, which replaces
the current translation table with the altered version at SYSTRIN:

mcastab intran=y

The user can make the change permanent with the PROFILE command. This
is, however, not recommended until the user has had some experience with
changing the tables.

To reverse the changes, the user issues the MCASTAB command with the
operand set to N; this replaces the current table (now it is SYSTRIN)
with the version that was current when the user logged on. But, since
the user lost the use of the "A" in the above example, he must log off
and log on again to get to the original table since he is unable to
enter MCASTAB successfully. The user should swap values wherever possi-
ble to retain the use of the entire character set. Had the user swapped
the "A" and the "B" in the above example, he could then reverse the
changes by issuing: '

mcastab intran=n

caution: Be careful not to lose the use of any important character by
replacing it without choosing an alternate.

prograrming Notes: At LOGCN, SYSTRIN and SYSTROUT always reflect the
system-supplied translation tables (as shown in Appendix C). Whenever
the user logs on, he can issue

mcastab intran=y,outran=y
to replace his translation tables with the system-supplied versions.

The user can also use the MCASTAB command to reverse any translation ta-
ble changes made with the MCAST macro instruction.

Examples:
1. The user wants to swap the characters *A® and "B" in the input
table:

sys,User: set systrin. (x*c1*,1)=x"c2*
Sys,User: set systrin. (x°c2’,1)=x"‘cl’
Sys,User: mcastab intran=y

2. Now, the user wants to reverse the changes and get back to the
system-supplied translation table:

Sys,User: mcastab intran=n

3. The user wants to convert the pound sign (#) to a backspace
character for input as data; he wants to use the asterisk as the
cancel character in place of of the pound gign:

Sys,User: set systrin. (x*7b*,1)=x'16" (translate # to a backspace
character)
Sys,User: set systrin. (x*17b',1)=X*00* (remove the cancel function
code (x'0c®) from the #)
Sys,User: set systrin. (x'15c* ,1)=x"0c’ (assign the cancel code to

the asterisk)

196

Sys,User: mcastab intran=y (effect the replacement)

MODIFY Command

.

This command inserts, deletes, replaces, or reviews lines of a VISAM
data set or a VISAM memker of a VPAM data set, or creates a VISAM data
set or member.

L] R |
|Operation|Operand
i 4

L)

| MODIFY iSETNAME=data set namel,CONF=R][,LRECL=record length,
| |IKEYLEN=key length,RKP=key displacement,RECFM={V|{F}1]
| | [,LFIN={Y|N}]
L H

e e e et it e oo

SETNAME
identifies a VISAM data set. If the data set already exists, it
mist have been defined previously by a DLCEF command within the cur-
rent task or must have been cataloged; the data set to be created
by MODIFY need not be defined or cataloged. 1If the VISAM data set
has hexadecimal keys (rather than the usual EBCDIC key or line num-
ber), the data portion of each record in the data set must also be
hexadecimal.

Specified as: a fully qualified data set name and (optionally) a
member of a VPAM data set. When specified, the member name is en-
clcsed in parentheses and immediately follows the VPAM data set
name.

CONF
specifies that review of modifications is requested; each line of
the data set that was changed is presented to the user in its orig-
inal form. The review cption cannot be used on a line that con-
tains hexadecimal data.

Specified as: R.

System default: no review of records.

Note: The next four operands must all be explicitly entered as operands
of MODIFY (or by the DEFAULT command), or all be omitted. When they are
specifiea, MODIFY assumes that the data set being specified is not a
line data set.

LRECL
designates the length, in Lytes, of each fixed-length logical
record.

Specified as: a decimal number. The maximum length for VISAM is
4000 bytes.

System default: 132.

KEYLEN
designates the length, in bytes, of the key associated with each
physical record. When a record is read or written, the number cf
bytes transmitted equals the key length plus the record length.

Specified as: a decimal number. The maximwum key length is 244
bytes.

Systemr default: 7.

Part III: Comrmand Descriptions 197

RKP
specifies the displacement of the key field from the first byte of

each logical record.

specified as: a decimal number. The maximum key displacement is
4000 bytes.

systenr default:

4 is assumed if RECFM=V.
0 is assumed if RECFM=F.

RECFM
indicates the format of the data set records.

Specified as:

v - variable-length records.
F - fixed-length records.

Syster default: V.

Note: When the LRECL, KEYLEN, RKP, and RECFM parameters are specified,
MODIFY assumes that the data set is not a line data set.

FTN
specifies that the MODIFY command is being executed to update an

existing FORTRAN source data set (via card input) that was created
using the FTN option of the DATA cormand or the DATASET card. When
this option is specified, it is assumed that the card input is
punched in keyboard format and the input is processed accordingly.

Specified as:

Y - this function is required.
N - the function is not wanted.

system default: N.

Functional Description: If LINENO=Y, the systen asks the user for modi-
fications by issuing a pound sign (#) and returning the carriage to the
margin. Otherwise, there is no prompting, and the user can enter modi-
fications after each carriage return. The user indicates his modifica-
tions by following these conventions:

1. 1Insert or replace a record.
key,data
key
the key of the record to be jnserted or replaced; for a line
data set, this is the line number.

Specified as: from one to seven digits.

data
the new data of the replacement or i{nsertion record; a maxi-

mum of 120 characters is permitted in a line data set.

Note: Modifications to a VISAM data set with hexadecimal keys and data

must be entered as keydata. Key and data must be specified as one hexa-
decimal string (for example, X% keydata).

2. Delete a record or a range of records.

198

D.,key[,last keyl

key
the key of a single record to be deleted or the first key of
a range of records to be deleted.

last key
the final key of a range of records to be deleted.

3. Review a record or range of records (whether or not the review
option is specified) without taking any other action with the
records.

R,keyl,last keyl

key
the key of a single record to be reviewed or the first key of
a range of records for review.

last key
the final key of a range of recoxds to be reviewed.

The user indicates that he has completed his modifications by entering
%E or by entering as the first character of a line a single break
character followed by a command.

Note: The complete key must ke given for a VISAM data set that is not a
line data set.

When the review option is requested, the line deleted or replaced is
presented after each modification.

If the ATTENTION key is pressed while the MODIFY conmand is in opera-

tion, it does not affect the modifications that have been entered up to
the moment of interruption. Those modifications are made in the user's
data set. The MODIFY command operation is terminated, however, and the
system requests the user’'s next command. If desired, he may then enter
a new MODIFY command and continue making modifications to his data set.

The MODIFY command accepts strings of EBCDIC representations of hexadec-
imal digits, converts them into machine represemtations of hexadecimal
digits, and inserts them in a data set as directed by the user.

The EBCDIC string representing the hexadecimal data is entered in the
format:

XXEBCDIC string -- (any non-EBCDIC character ends hexadecimal data)

When the system encounters the X and the immediately following %, it
enters hexadecimal mode. It then assumes that an EBCDIC string follows
and proceeds to convert each two ERCDIC characters in the string to one
hexadecimal character, until the first nonhexadecimal character is
encountered.

In performing the required conversion, the system checks to ensure that
each input character represents a valid hexadecimal digit; that there is
an even number of input characters in the string; and that there are no
incomplete inserts in any input line. (More than one insert may be made
in any input line; however, one insert may not be entered across input
lines.)

When characters not in alphameric format are displayed at the terminal

(REVIEW option), they will be lost in the transmission. There is no
REVIEW option for the HEX option.

Part IIX: Command Descriptions 199

caution: The DATA and MODIFY command names may be included in the rec-
ords entered under a MODIFY command, but multiple break characters must
be entered to end the DATA or MODIFY command in the data set. The first
%XE or single break character is interpreted as the end-of-input record
for the current MODIFY cormand.

Programming Notes: To save processing time, the user should enter his
modifications in sequence, starting with the lowest line number.

By making a series of insertions, the jssuer can use the MOLIFY command
to create a new VISAM data set.

When a data set that is to serve as SYSIN is being built from records
entered via the card reader, the maximum reocord length must be 80 char-
acters. In this case, continuation conventions must agree with those
specified for card input (see part II, Section 1, under "Entering Com-
mand Statements® in couversational mode) .

The user may create a vISAM data set, other than a line data set, that
includes his own keys. 1f so, he must give the key position and length
within the record. These key values may then be used to insert,
replace, delete, OT review lines while the data set is being built. For
example, if the user enters:

AB14000 link, upper arm

he must have previously specified, in the MODIFY command, KEYLEN=5,
RKP=3, fixed-length records, and the record length. Thus, 14000 is the
indexing key to his record.

Wwhen creating a record that is longer than one line, the user mast enterx
a hyphen at the end of the line to signal that the next line is a con-
tinuation. (If the two 1ines should not be run together, use a blank
space before the hyphen.) The hvphen does not become part of the rec-
ord; the contimuation line is not prefixed with a key.

Note: MODIFY, although much less flexible than the text-editing com-
mands, does permit use of a VISAM key anywhere in the record. The text
editor works only with line and region data sets.

Examples:

1. The user wants to delete lines 107 through 195 and replace line 107
in a line data set ASET. Review is not requested. {LIMEN=I.)

User: podify source.aset
Syster: ENTER MODIFICATICNS
Sys, User: #

4,107,195

#

107 ,x=a**2.0
#
108 ,write(2,5)x

8

109 ,end

#

_ftn aset,y

To end modifications, the user enters a break character and a con-
mand after the system prints out the pound sign and returns the.
carriage.

2. The user wants to delete 1ine 4900 and insert a new line at 1line

number 5450 in his partitioned line data set AB12.cA(V8). He re-
quests review.

200

User: modify akl2.ca(v8),r
Systemn: ENTER MODIFICATICRKS
Sys,Userx: #
4d,4900
System: 00004900X=(X=C) (prints out the deleted line for review)
Sys,User: #
5450,j=j+1

System: 00005450j=3j+1 (prints out the inserted line for review)

Sys,User: #
%e

System:

The user wants to replace line 12300 and insert a new line at 14350
in his data set DAT.C. He requests review.

Userx: modify dat.c,r
System: ENTER MODIFICATICNS
Sys,User: #
12300,somexr=k/c
System: 12300SOMFR=B-C (reviews old line)
Sys,User: #
14350,i=12
System: 14350I=12 (prints out the inserted line for review)

Sys,User: #
%e
System:

The user wants to create a new VISAM data set named QUIK4. Records
are to be 80 bytes and fixed~length; the key is a five-digit part
number, displaced two characters from the start of the record.
Review is not wanted.

User: modify quiki,lrecl=80,keylen=5,rkp=3,recfm=f
System: PROCEEDING: DATA SET OR MEMPER WILL BE CREATED ENTER
MODIFICATICNS

Sys,User: #
ab00411 spring,retaining

:b00u12 spring ,guide

:b00u13 clip,retaining spring
:booulu widget ,silverplated
e

System:

The user wants to create a new line data set named DISSMAL. Review
is not wanted. (LIMEN=I.)

User: modify dissmal

System: PROCEEDING: DATA SET OR MEMBER WILL BE CREATED
ENTER MODIFICATIONS

Sys,User: #
100,ald dc f*e75°*

#
200 ,smel dc £*5280°*
#
300, dc £'6793°
#
400, dc f£'557°
#
%e
System:

Part III: Conmrand Descriptions 201

NUMBER Conmand

This command renumbers a line or a range of lines within the current
region.

| A
jOperation|Operand
| - L

;NUMBER I[N1=starting linel [,N2=ending linel [,NBASE=base number]

L

bt et s anlin e ol

I[,INCR=increment]
L

N1

N2

jdentifies the line or first of a range of lines to be renumkered.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST - last line in the current region or data set.

sSystem Default: N1 is set to the value of CLP. If N2 is defaulted,
N1 is set to the first line of the current region or data set.

jdentifies the last of a range of lines to be renumbered.

specified as: a one- to seven-digit decimal line number that may
be absolute or relative.

LAST - last line in the current region or data set.

system default: N1 is assumed if it was specified. Otherwise, N2
is set to iast line in the region or data set.

NBASE

INCR

202

indicates the number from which the renumbering is to be
incremented.

specified as: from one to seven decimal digits. The value must
not be less than Nl.

system default: The value of Nl or its default value.

specifies the increment between the lines to be renumkered.

specified as: from one to seven decimal digits. If the increment
causes remumbering to overlap the number of the line following N2,
the increment is computed as though it were defaulted, and the user
is prompted with a message that the increment has keen furnished by
the system.

system default: the difference between the base and the line num-
ber following N2 is divided by the number of lines to be renum-
bered. The increment is then determined in this manner:

If the guotient is: the increment is:
100 or greater 100
50-99 50
20-49 20
10-19 10
5-9 5
2-4 2
1 1

Note: If all operands are defaulted, these values are assumed:

Ni1=First line of region
N2=LAST

NBASE=100

INCR=100

Functional Description: Renumbering does not change the sequence of
lines or atffect the region name prefixed to line numbers.

when all operands are defaulted, the entire data set or region is
renumbered.

Upon completion of this command, the CLP is positioned to N2 plus the
value of INCR or to the line number after N2, whichever is less.

If the NBASE is less than N1, a diagnostic message is issued. If the
value of INCR causes the renumbering to overlap the line number speci-
fied in N2, the system computes the increment as if it were defaulted
and notifies the user by a message. Renumbering with the new increment
then occurs.)

Caution: A language-processing command (EDIT, PROCDEF, or PLI) must be
invoked before the command is entered.

1f the NUMBER command is not allowed to run to completicn, the user may
lose Qdata.

Examples:
1. number 103,290

original Sequence Resulting Sequence

XYz0000100 XYz0000100
XYZ0000103 XYz0000103
XYz0000107 XYZ0000123
XYz0000108 XYz0000143
XYZ0000109 XYZ0000163
XYz0000111 XYz0000183
XYZz0000114 XYZ0000203
XYZ0000116 XY20000223
XYZ20000169 XYZ0000243
XYz0000290 XYZ20000263
XYz0000400 XYZ0000400

8ince NBASE is defaulted, it is assumed to be 103 (N1). The dif-
ference between the base and the line following N2 (400) is 297,
which is divided by the number of lines. BAs the quotient is 33
(297 divided by 9 = 33), the increment is 20.

2. mmber 17,,22

Original Sequence Resulting Sequence

AR0000010 AR0000010
AR0000017 AR0000022
ARO0000035 AR0000035

3. number 912,1000

Original Sequence Resulting Sequence

AR0000900 AR0000900
AR0000912 AR0000912
AR0000915 AR0000932
AR0000916 AR0000952
AR(0000917 AR0000972
Part III: cCommand Descriptions 203

AR0000918 AR0000992
AR0001000 AR0001012
AR0001050 AR0001050

4. number 5,12,nbase=6,incr=13

original Sequence Resulting Sequence

M0000001 M0000001
M0000005 M0000006
M0000008 M0000019
M0000009 M0000032
M0000100 M0000100

5. number 100,200

Original Sequence Resulting Sequence
100 100
125 120
150 140
200 160

250 250

ODC Command

This command converts an OS text deck into a 1SS object module and stows
the module into the highest joblib.

T T 1
| operationjoperand {
|8 L ¥ |
¥ LB

jobc jopcMoD=module (,CDCPLI=Y|N] [,OCCERASE=Y| N) i
L L. 3
module

the name of a test dataset which is a generation data group dataset
of the form LOAD.module(0)

ODCPLI
tells the command whether the text deck was produced by the PL/I

optimizer. This operand can ke defaulted if deck was produced by
COBOL, FTHH or HASM.

ODCERASE .
signifies whether the command should erase the LOAD.module(0) data-

set following completion of the conversion.

Note: When you convert a PL/I module, ODC checks the value of PLIPACK,
in your user profile. If PLIPACK=N, one or more pages are assignedto
each CSgcT. If PLIPACK=Y, CSECTs are packed. Packing consists of com~-
bining CSECTs into contiguous storage, retaining doubleword boundaries
for CSECT origins. The name of the initialization CSECT is retained as
a CSECT name, and other CSECT names are transformed into entry-point
names. In effect, the CSECTs are combined into a single CSECT. If
PLIPACK=P, ODC packs all CSECTsS except static external CSECTs that have
the TSS COMMON attribute, or are more then 4096 bytes long. This is
generally more efficient than PLIPACK=Y, since COMMON CSECTs are null
CSECTs and they are mapped onto external storage cnly 1f they are
packed. The IBM-supplied default for PLIPACK is P.

204

0SDD? _Command

This command will 1list to SYSOUT all filedeffed datasets, indicating 08
ddname and TSS dataset name.

perationTOperand
1

sDD?

G s ey o o

-
jo
£
r
{o
t

o e o

Note: If a TSS dataset is datadeffed, but not filedeffed, it will not
appear in this list.

OSRUN Ccmmand

This command allows the user to execute the output of a program product
under TSS, using the Program Product Language Interface (PPLI).

¥ k|

| Operationjoperand

L i

3 v

|OSRUN |[modulel, "parm’]
L L

module

specifies the name of the program to be run using the PPLI. It
mist have been assembled/compiled using the PPLI.

parm
this represents a value that will be passed to the program being

run. Note that to pass an argument to a PL/I Optimizing Compiler
main procedure the argument must be preceded by a slash.

Example: osrun PL130,°%$234567890"

Functional description: This command will invoke a routine which sets
up the PPLI environment (i.e., issues SIR's for SVC's and initializes
required control blocks). It then invokes the module specified, and
upon return, deactivates the PPLI environment.

PC? Command

This command presents the name, access, and, for shared data sets,'the
owner's identification of one or more cataloged data sets.

T L
|operation|Operand
i H

T

3 T
|pPC? | NAMES=(data set name|{(data set namel,...1)}
L 1 :

Note: Managers and administrators should see Manager®s and Administra-
tor 's Guide for special operands.

NAMES
identifies one or more cataloged data sets. If a partially quali-

fied data set name is specified, each data set with the same quali-
fication is presented.

specified as: one or more fully or partially qualified data set
names. When two or more data set names are specified, they must be
enclosed in parentheses.

Part III: Conmand Cescriptions 205

system default: every data set in the user's catalog is presented.

Functional Description: PC? provides the user with this informat ion
apout a data set:

e Name - the name of the data set is given.

e Access - if the data set is owned by the user, the owner access is
given; if the data set is owned by someone else, the sharer access
is given.

e Ownership - if the data set is owned by someone else, the user iden-
tification of the owner is given.

In conversational mode, the information is presented at the terminal.
In nonconversational mode, the information is printed in the SYSOUT data
set.

Programming Notes: Presentation can be terminated in conversational
tasks at any point by pressing the ATTENTION key. The [SS? command can
pe used for more thorough information abkout cataloged data sets.

Examples:

1. The user wants the names of all his data sets.

User: gc?

System: D[ATA SETS IN CATALOG WITH QUALIFIER NICHOLAS
NICHOLAS.USERLIB, ACCESS: RW
NICHOLAS.NICHOLAS.TEST, ACCESS: RW
NICHOLAS.TA000304.SOURCE. SINGLE, ACCESS: RW
NICHOLAS.TA000307.SOURCE.FCB, ACCESS: RW
NICHOLAS.TA000310.SOURCE. DOUBLE, ACCESS: RW
MICHOLAS.TR000313. TMPDBL, ACCESS: RW

2. The user wants the names of all his data sets with the qualifica-
tion J.5.B..

User: pc? j.s.b.

The system presents the information for all the data sets with the
qualification j.s.k.

PERMIT Comrand

This command allows the user to permit or restrict sharing of his cata-
loged data sets by other users.

r T R |
;Operation|09erand |
r 1 4
| PERMIT |DSNAME={data set name|#*ALL} 1
i | {,USERID={(user identificationl,...3)|*ALL}] |
| | {,ACCESS={R|RO|RW| U}1 |
L) & ;|
DSNAME

jdentifies the cataloged data set for which sharing is being per-
mitted or restricted.

Sspecified as: a partially or fully qualified data set nawe.

*ALL - all cataloged data sets of the uger are to Ye shared. (This
is referred to as sharing of the catalog.)

206

USERID
identifies the user keing permitted or restricted sharing of the

specified data set.

Specified as: the user identification of one or mcre permitted or
restricted users.

*ALL - all users of the system are permitted or restricted sharing.

Systenr default: *ALL.

ACCESS
designates the access qualification for users sharing the data
sets. ‘

Specified as:

R - restricts access; sharing access that was previously permitted
is withdrawn.

RO - read-only access; sharers may only read the data set.

RW - read-and-write access; sharers may both read from and write to
the specified data set, but may not erase it.

U - unlimited access; sharers may read, write, and erase the data
set.

System default: If a list of sharers is being updated, the access
of the last sharer in the list is assumed. If a new list of
sharers is being created, U is assumed.

Functional Description: When PERMIT is issued to permit sharing, the
system either: (1) enters the list of sharing user identifications and
the associated access qualifiers in the owner'’s catalog entry that was
specified by the DSNAME operand, or (2) marks that catalog entry for
universal sharing. These notations are made only in the owner's cata-
log; sharers' catalogs are unaffected by the PERMIT comrmand.

When PERMIT is issued to restrict sharing, entries for sharers are
removed from the owner's catalog entry.

Cautions: If a sharer erases a data set to which he has Leen given
unlimited access, the entry of that data set is also removed from the
owner's catalcg. Thus, the owner's catalog can be changed without his
knowledge.

The owner of a shared data set cannot withdraw sharing privilege from an
active user of that data set. :

After a PERMIT command is issued for a data set, the original data set
definition is not changed (for example, it indicates private ownership).
If a second user issues a SHARE command for the data set, the owner must
release the existing data set definition before the sharer can use it.

Programming Notes: The designated sharers must issue SHARE commands to
link their catalog entries to the owner's. The sharers can reference
the data set under the owner‘'s catalog entry only after the PERMIT com-
mand has been issued.

Once the owner grants access to all other users, he must also restrict
all users before he can selectively change the access qualification for
a specific user.

Part III: Conmand Lescriptions 207

The access gqualification granted to a sharer is not limited by the
access level established for the owner during cataloging. For instance,

the owner can catalog a data set with read-only access for himself and
still assign unlimited access to a sharer in a PERMIT command.

Examrples:
1. If all users have previously been granted access to catalog entry

MB.C, and the owner now wants to restrict every user except SSIMON
and LAF29, he must first restrict all users:

permit mb.c,*all,r
This marks catalog entry MB.C as private. Since the entry is now
private, the PERMIT command to grant SSI<ON and LAF29 access
creates a new list of sharers:

permit mb.c, (ssimon,1af29) ,rw

2. The user wants to allow users JOSEPH24 and HENRY24A to share his

cataloged data set AD.AT1 with read-only access. These are the
only sharers in the sharer list.
User: permit ad. at1, (joseph24,henry2tal,ro
The system enters a list of sharers in owner's catalog.

3. The user now wants to update the list created in Example 1 by
changing the access of users JOSEPH24 and HENRY2UA to read/write.

User: permit ad.atl,(joseph24,henry2ta),rv
The system updates the sharing list.

4. A user wants to share his okject modules in his user library with
JBROWN#1.

User: permit userlib,(jbrown#l),ro

The system enters the sharing list in owner's catalog.

PLI Command

This command invokes the PL/I compiler and compiles a souxce program
module.

e —pnn

—
{operationjoperand
|8

e o
o
=
]

Al
nj
-+

| INAME=module namel [,PLICPT=compiler cption list]
| [,PLCOPT=1language controller options]}
| [, SOURCEDS=source data set namel
| [,MFRGELST=cconverter input list)
| [,MERGEDS=converter input data set]
| [,MACRODS=intermediate data set namel
| [, EXPLICIT=external names to ke changedl
| (,XFERDS=transfer vector data set name]
I

b-————-———————L——d

[P0 e s et st t— ——

NAME .
The name by which the program will ke known. It consists of one to
eight alphameric characters, the first of which is alphabetic. If
the name is omitted, PLC assumes that it is identical to the namwe
of the source data set if that is in the correct form. If neither
NAME nor SOURCEDS is provided, no compilation takes place and PLC
proceeds to process the merge list or go on to the next set of FLI

208

parameters. See PL/I Programmer's Guide for a ccmrlete list of
naming rules.

Note: In nonconversational mode, PL/I source statements can follow
the PL/I command in the input card deck. See PL/1 Programmer's
Guide for further information.

PLIOPT

The 1list of options to be used by the compiler. It is considered
to be one parameter, and the list of compiler options following the
equal sign in the PLIOPT parameter must therefore be enclosed in
parentheses unless only one value is given; the segparate options
are separated by commas. The compiler options are described in Ap-
pendix I.

PLCOPT

2 list of options external to the PL/I ccmpiler that effects the
compi lation's progression through TSS. These opticns must be en-
closed in parentheses unless only one value is given. The options
and the standard default for each are shown in Table 18.

Table 18. PLCLPT options and system defaults

r -1 b
| PLC Option | standard Default |
p-——- } - ~
i NOPRINTlPRINTlPRERASE | NOPRINT -1
| DIAG|NOLIAG | DIAG |
| NOCONT|CONT | NCCONT]
| LISTDS|LISTOUT | LISTDS 1
| NOCONV |]
| | |
| LIMEN= i)
| | system defaults |
| BREVITY= |]
L i I |

The PLC options shown in Table 18 are defined as follows:

NOPRINT or PRINT or PRERASE

DIAG

this option specifies whether the listing data set produced Ly the
compiler is to be printed on a high-speed printer. NCPRINT indi-
cates that the data set is not to be printed as a part of the com—
pilation. You can at some later time issue a PRINT command direct-
ly as follows:

PRINT LIST.XXX(0),,.EDIT

where XXX is The module name given in the NAME operand. PRINT in-
dicates that PLC should issue the print request automatically.
PRERASE indicates that PLC should cause the data set to be printed
and erased after printing; this is equivalent to:

PRINT LIST.XXX(0),,,EDIT,ERASE
Normally PLC does not issue any print requests.

If LISTOUT is specified, the data normally written into the list
data set is directed to SYSOUT and no print request is appropriate.
In this case the value of this print option is forced to NOPRINT
under any circumstances.

or NODIAG

this option specifies whether diagnostics are to be directed to
SYSOUT or not. (This option only has meaning if LISTDS is speci-
fied. 1If LISTOUT is specified, then all compiler diagnostics

Part IIX: Conrxand LCescriptions 209

appear on SYSOUT as a part of the listing data.) If DIAG is speci-
fied, then the diagnostics that will appear on SYSOUT are controll-
ed by two command-system defaults, LIMEN and BREVITY, which control
the severity and length of the PL/I diagnostics selected for print-
ing on SYSOUT. The ILIMEN and BREVITY operands of the PLI command
are exgplained later in this section.

The format of the diagnostic message is:
x IPMnnnnl statement no. line no. text
where x is the severity of the diagnostic and nnnn is the diagnos-
tic number. For example: ’
5 IEMO18B2I 15 1600 TEXT BEGINNING °*KEYFROM CK®* SKIPPED IN
OR FOLLOWING STATEMENT NUMBER 15

1f no option is specified, then DIAG is assumed.

NOCONT or CONT

specifies whether additional programs are to be compiled kefore re-
turn to the command system. NOCONT implies that there is no con-
timuation of compilation. This is assumed if no value is speci-
fied. If CONT is specified, then PLC prompts for a new module name
with PLI on a new line if none was given in the original PLI com-
mand. To end the prompting, enter an underscore with a command, or
default by pressing the RETURN key.

This CONT event can ke repeated as often as necessary.

LISTDS or LISTOUT

this option allows you to choose whether a separate data set should
be constructed by the PL/I compiler for the computer listing or
not. This is the default value specified explicitly by LISTDS.
LISTOUT implies that a separate listing is unnecessary and that the
listing output can be placed in SYSOUT. Particularly in nonconver-
sational environment, the use of the SYSOUT data set is more effi-
cient. Since in nonconversational operation the SYSOUT data set is
automatically printed, the number of print requests is reduced as
well as the overall load on the system.

In a conversational environmment, placing the listing data on SYSOUT
means typing this data on the terminal. Only in most urgent cir-
cumstances should you consider this alternative.

NOCONV

this option allows you to specify that nc corpilation is to occur.
If NOCONV is selected, the MERGELIST operand should contain the
names of the modules that are to be put into the transfer wector
data set.

LIMEN=

210

LIMEN is the operand name in the user profile for message-severity
codes. It controls the severity of diagnostic messages printed on
sysouT. If specified in the PLI command, LIMEN applies only to
PL/1 diagnostics. (See DIAG, above.) If LIMEN is not specified,
the current value in the system profile is used.

LIMEN Value Lowest Level Diagnostic Issued
I (information) Warning messages

W (warning) Serious error messages

X (serious error) Termination error message

T (termination error) None is' shown

BREVITY=
BREVITY is the operand name in the user profile for message-length

codes; it controls the length of diagnostic messages printed on
SYSOUT. If specified in the FLI command, it applies only to PL/I
diagnostics. (See DIAG, above. If not specified, the current
value in the system profile is used.

BREVITY Value Cutput

M (message ID) Message ID anly

s (standard) Full text of message

E (extended text) Full text of message

T (standard, no ID) Full text of nessage without
message ID

X (extended, no ID) Full text of message without

message ID

Note: Both LIMEN= and BREVITY= can be followed by only one
character. If the equal sign is not the next~-to-last character,
the orption is ignored. Thus:

LIMEN=I is valid

LIMEN=INFO is invalid because more than one character
follows the equal sign.

LIMEN= I is invalid because there should be no space after the
equal sign.

SOURCEDS
the fully qualified name of the data set from which the PL/I source
statements are to be obtained. BAny valid line data set is allow-
able. Examples:

1. AELE

2. A.B.C.D.

3. A.B(O)

4. A.B.G0000OVOO
5. A.B(0)

6. A.B(0) (O)

If the NAME operand is omitted, the SOURCELS name is used as the
name of the object module. Therefore, if the NAME operand is
omitted and a TSS executable object module is to be generated, the
source data set must not be in the last-defined job library, since
the object module will be stored in that library. TSS does not
allow a library to contain duplicate entry names.

If SdURCEDS is omitted, the name assumed for the source data set is
SOURCE.XXX, where XXX is the value you gave for the NAME operand.

If neither NAME noxr SOURCEDS is given, it is assumed that no compi -
lation is to take place for this iteration of PIC. Other functions
involving ODC may be involved. The system default for SOURCEDS is
a string of blanks.

MERGELST
the names, separated by commas, of previously compiled modules to
be converted by ODC for execution with the module being compiled.
Each of these modules should still exist as data sets named IOAD.
XXX (0), where XXX is the name given by you, or by default, in the

Part III: Comnmand Descriptions 211

NAME operand. (Intially, the compiler creates all modules as LOAD.
XXX (0) data sets. You should not erase these data sets until you
are sure that you have all the needed copies of the converted
object module.) Modules that have been stored in job libraries af-
ter processing by ODC cannot ke used in a merge list.

If NOCONV is specified as a PLC option, this operand must contain
the names of the modules that are to be transformed. You should
keep the LOAD data sets if complete module refreshment is desired.
Otherwise, you are not required to keep the LOAD data sets for
reconversion.

If the MERGELST operand is omitted but the LOAD option is indicated
in the PLIOPT list, the PL/I compiler still generates a merge list
containing the name of the compiled program.

MERGELST is similar to the NAME cards generated by OBJNM=aaaaaaaa
in PL/I. The merge list can be a single program name:

BAKER
or a list of program names enclosed in parentheses:
(FOX, GEORGE, HOW)

The list must not exceed 253 characters, including klanks and
connas.

pDuplicate program names in the list cause reprocessing of those
programs. The only penalty is in terms of added processing time.

1f no value is supplied for MERGELST, then a null string is assumed
initially.

MERGEDS

allows you to name a data set as the source of the merge list.
This can be in lieu of MERGELST or a supglement to it. If ttis
data set is VS or V1, it is assumed that each record contains from
0 to 15 program names separated by commas. As anywhere else,
spaces are immaterial. The PLC and ODC assume that all program
names in the MERGEDS for which a LOAD.XXX(0) data set exists are
tobe combined into a single JOBLIB. o»Duplicate names cause dupli-
cate processing, but otherwise do not hurt.

If the data set is a VP data set, then it is assumed that all the
member names for which a LOAD.XXX(0) data set exists are to be com-
bined into a JORLIB. If the current active JORLIB has the same
name as MERGEDS, then all modules in the POD for which a PL/I LOAD.
XXX (0) data set exists are to be reprocessed.

If no value is supplied, no data set is assumed for MERGEDS.

MACRODS

212

is the data set name to be associated with the intermediate text.
If no name is given and either CHARU48 or MACRO options are speci-
fied, the compiler creates a data set named:

MAC . name (0)

where 'name' is the user-supplied object module name. This data set
is normally erased when the compilation is completed. If you spe-
cify a value for MACRODS, that name is used instead of MAC.name (0)
for the data set, and it is retained permanently with a compiler-
generated source margin of 2 to 72. If a v=lue is given for

MACRODS but neither CHAR48 nor MACRO is specified, the value is
ignored and does not contribute to or hinder the compilation.

Note: When using this data set for recompilation, a source margin
of 2 to 72 must be specified in the SORMGIN option of the PLI com-
mand's PLIOPT parameter.

EXPLICIT
specifies the external names to be changed and put into a transfer
vector data set.

Specified as:

nare - the external name.

(name+[,...]) - list of external names.

ALL[(name[,...1)] - all external names that 4o not begin with IHE
except the names listed in parentheses

Programming Notes: The system default, MAP, reports to the user
the results of name changes to REFS. The default, N (no report),
can be changed to Y (report) by issuing the DEFAULT command.

The padding character that is used when the external names are
changed is the symbol a. This character can be changed to any
alphatetic character or to the symbols # or $ by using the DEFAULT
command, with PADCHAR specified as the orperand.

The system default value, UPDTXFER, if entered as UPDTXFER=Y, spe-
cifies that new names can be entered into the transfer vector data
set. If entered as UEDTXFER=K or if defaulted, no names can be
entered into the data set.

XFERDS
is the name of the transfer data set that will be created. If this
operand is omitted, there will be no transfer data set. An exist-
ing data set specified on this operand will be updated, and if the
data set does not exist, it will be created.

Prograrming Notes: The system default value, PLIPACK, is checked to de-
termine what type of CSECT packing will be done. The options are: (1)
Y, all CSECTs of the input module will be packed; (2) P (the default),
there will be partial packing of CSECTs; and (3) N, no CSECT packing
will be done.

The system default value, REIJMSG, is used to override the output of
rejection messages by the loader. The options are: (1) N (the
default), no overriding; and (2) ¥, override.

You can change the initial settings of PLIPACK and REJMSG. Issue a
DEFAULT cormmand with the new value before issuing the PLI command.

PLIOPT Command

This command will invoke the PL/I Optimizing Compiler program product
using the Program Product Language Interface.

L . T 1
|Operation|Operand i
L i J
r T - 1
| PLIOPT |NAME=modulename [,CSOPTS=(optl,opt2,...)] |
i | {, SOURCEDS=sourcedsname]} |
S ——d e e o e |

Part III: Comnrand LCescriptions 213

NAME
jdentifies the name ky which the oY%ject prograr will be known to
TSS. It consists of one to eight alphameric characters, the first
of which is alphabetic. If the SOURCEDS cgtion is not specified,
there must exist a dataset called SOURCE.name which is assumed to
be the scurce program to ke compiled.

0OSOPTS

specifies a list of OS options to be in effect during the compila-
tion. Not all options are applicakle in TSS.
Abbreviated Name

compiler Option TSS Default

AGGREGATL | NOAGGREGATE AG | NAG NOAGGREGATE
ATTRIRUTES | NOATTRIBUTES Al NA NOATTRIBUTES
CHARSET ([48]60] cs(lu8| 60) [EB{BI) CHARSET (6 0EECDIC)
{EBCDIC|BCD])
COMPILE|NOCOMPILE [(W|E]S)] cinc ((WIE|S)] NOCOMPILES(S)
CONTROL (* password”) ———- —-——-
COUNT | NOCOUNT CT|NCT NCCCUNT
DECK|NODECK D|ND NOEECK
DUMP | NODUMP DU| NDU ———
ESD{ NOESD -—— NDESD
FLAG ((I|W]E|S)] F ((I|W]|E|S)] FLAG(I)
GONUMBER | NOGONUMBER GN| NGN NOGONUMBE#
GOSTMT | NOGSTMT GS] NGS NOGOSTMT
IMPRECISE | NOIMPRECISE IMP |NIMP NCIMPRECISE
INCLUDE | NOINCLUDE INC|NINC NOINCLUDE
INSOURCE| NOINSOURCE IS| NIS INSOURCE
LINECOUNT (n) LC(n) LINECOUNT (55)
LIST [(N,M)]|NOLIST ———- NCLIST
LMESSAGE | SMESSAGE LMSG |SMSG LMESSAGE
MACRO | NOMACRO M| NM NOMACRO
MAP| NOMAP -—— NCMAP
MARGINI('c’) | NOMARGINI MI(*c')|NMI NOMARGINI

MARGINS(m,n [,c})

MAR(m,n [,cl)

MARGINS(2,72,0) or
MARGINS (10,100,0)

MDECK | NOMCECK MD| NMD NCMDECK
NAME(*name*) N(*name’) ——
NEST|NONEST — NONEST

2148

NUMBER | NONUMBER
OBJECT | NOOBJ ECT
OFFSET| NOOFFSET

OPTIMIZE(TIME]0]2)
NOOPTIMIZE

OPTIONS| NOOPTIONS
SEQUENCE (m,n) | NOSEQUENCE

SIZE([-1YYYYYYYY|
[-1YYYYYK MAX)

SOURCE | NOSOURCE

STMT| NOSTMT
STORAGE | NOSTORAGE
SYNTAX|NOSYNTAX ((W|E|S)]

TERMINAL [(opt-list)l}|
NOT ERMINAL

XREF | NOXREF

NUM | NNUM
OBJ | NOBJ

OF | NOF

CPT (TIME|O | 2) | NOPT

OP | NOP
SEQ(m,n) | NSEC
Sz [-)YYYYYYYY|

{-1YYYYYK MAX)

S|NS

STG| NSTG

SYN|NSYN [(W|E|S)]

TERM [(opt-1list)]]

. NTERM

X | NX

NONUMBER
OBJECT
NCOFFSET

NOOPTIMIZE

OPTIONS
NOSEQUENCE

SIZE(MAX)

SOURCE
STMT
NCSTCRAGE
NCSYNTAX(S)

NOTFRMINAL

NOXREF

See Appendix L and OS PL/I Cptimizing Compiler Programmer's Guide for

further information.

SOURCEDS

specifies the name of the input data set to be ccmpiled.

POD? Command

This command places on SYSOUT a list of the member names and, optional-
ly, the alias names and other information pertaining to individual mwem-
bers of cataloged VPAM data sets.

L T
operation|operand
L

|
[
1 4
{ POD?
|
L

TLPODNAME=data set namel [,DATA=Y] [, RALIAS=Y]
{ [,MODULE={module name|*ALL}]
i

ARSI

PODNAME

identifies the cataloged VPAM data set for which memker information

is to be presented.

Specified as:

the fully qualified name of a VPAM data set, or the

absolute or relative generation name of a VPAM member of a genera-

tion data group.

system default:

DATA

USERLIB.

specifies that the system and user data (if any) associated with

each member is to ke printed in hexadeciral.
bytes (42 hexadecimal digits) of user data are printed.
and content of this data are defined by the user.

Only the first 21
The format
Similarly, only

certain system data (25 hexadecimal digits) can be printed.

Part III:

command Descriptiomns 215

specified as: Y.

System default: the system and the user data associated with each
member is not printed.

ALIAS
specifies that any aliases of each member are to be printed. in
alias is another name by which a member of a VPAM data set can be
identified.

specified as: Y.

System default: the members' aliases are not listed.

MODULE
identifies the module (member name) for which information associat-
ed with that module will be printed. The information consists of
the mcdule's version ID and the name, version ID, attributes, and
external references for each CSECT within the module. The CSECT

- entry points are provided by the ALIAS ortion.

Specified as:

module name - information is provided for the specific module.
#pLL - information is provided for all modules in the data set.

System default: no module information is printed.

Functional Description: If a VPAM data set is a program library {(for
example, user library or a jok library), its members are okject program
modules. Fach member has a name that was assigned by the usexr during
compilation, assembly, or linkage editing. This name is used by the
system as the basis for stowing the module in the library, and it is
recorded in the program library's directory (POD). To make each module
available on the basis of other names (for example, entry point names),
the system also defines a number of aliases for the module ({for example,
all external symbol definitions except those named COMMCN are defined as
aliases). The alias names are also stored in the POD by the system.

The user can thus invoke a module kased on its member name or any of its
aliases. Additional information describing the version and external
references of a module is contained in the program module dictionary
(PMD) and is available to the user via the MOLULE option.

If a VPAM data set is not a program library, each of its member names is
defined in the STOW macro instruction or in a command (as CDS) that was
used when the member was added to the VPAM data set.

pProgramming Notes: The PCD? command can be used to examine information
pertaining to the members of any cataloged VPAM data set that a user
owns or shares.

The conversational user may terminate the printout at any time by pres-
sing the ATTENTION key.

The format of the information sent to 3YSOUT aftexr the POD? command is
executed is shown in Figqure 2.

Example: The user wants to obtain a listing of the mcdules presently in
his user library.

216

User: pod? userlib,y,y
System:
SYSPRX 2003600030001000000000000

JIJCBRELP 2002E00030010000000000000 00000000000001640001 0000000020000000000060
PSCNDX ,RDINDX ,GOINDX

NIP 2001F00030010000000000000 00000000000000D000010000000010000002000000
PIN .
TWOCOL 2000Cc00030010000000000000 000000000000035C00010000000020000000000000
TWOCOL#C, TWOCOL#P
F g —
T 1 ¥] T 1 R
member by system-supplied wB user-supplied
name member data member data
- A — 2la
L—S"I 2 L‘ 25 hexadecimal 2 L———"42 hexadecimal digits ——
bytes bytes digits bytes
i
LT R - R
733030 alJ.asl ’ a11a52 ’ ’ allas?

L | l | 1L |
-4 4 le—s——ﬂl-—s——!\‘- v ’|I~——8——

If there are more than seven alias names, additional lines
are printed that contain up to seven aliases each,

T I T
bB#bMODULEbVERSIONEID;bM version ID Bl FTNYMAIN
|

—-1 4 -L—-——»—ZO 18— 4 jo—8—of

See Note 1 - See Note 2
f] i [. 1 AR Hcr)rﬂ'ned
PYUBCSECT : bl name, BY version ID PBPATTR:VAR,RO,PUB nu
1 ey f, below
! | I O .
—4 4 ._10———~—-8———12~—~—~—18~———’ 2|-—5~D-l 3 MZM 3 IL—
Lt
TT 1T i i Al e Tl
PSECT,COM PRIVIL'SYSDbbbEXTERNALEREFERENCES: REFl ’ ’ REF6
{ L1 I | £ il
1B
L»S’m 3 |'||"6—-—M 3 L4W‘~*“20-———>ﬁ——8‘—lll<' ‘JlL—B—-J
If there are more than six references, additional lines
are printed that contain up to eight references each. See Note 3
Note 1, The module version 1D may appear in either of two formats, cepending on the manner in

which it was originally specified. Cne format consists of eight EBCDIC characters, and the other
consists of a date and time in the format MM/DD/YY/BHH:MM:SS (for example 07/22/71 12:15.08) .

Note 2. If this is a FORTRAN module, this eight-byte field contains the words FTN MAIN or FTN SUBR.

Note 3. The CSECT name, version ID, attributes, and external references are repeated for each CSECT
within a module. The attributes and extemal reference portions only are provided if at least one attri-
bute or one external reference is apnlicable. Only the applicable attributes are provided without
superfluous commas. The attributes that may be associated with @ CSECT are Var {varicble-length),

RO (read-only), Pub (public}, PSECT (PSECTY, Com {common), Privil (privileged), and Sys (system).

Figure 2. Format of output from the POD? command for each member

POST Command

3ee "DISABLE, ENABLE, PCST, and STET Commands."™-

Part III: <Conmand Cescriptions 217

PRINT Command

This command schedules 3 job to print a data set on a high-speed line
printer. ‘

¥ T
IOperation|Operand
1 L

:

4 -
|DSNAME=data set name [,STARTNO=star ting positionl
| [, ENDNO=ending position]

| PRTSP=EDIT|1]2|3]|

| [,BEADER=H] { ,LINES=lines per pagel [,PAGE=P]
ll,ERASE={Y|N}l{.ERROROPT=(ACCEPT]SKIP!END}]

| {, FORM=paper forml {,STATION=station id}l

L -

]
o]
(=)
&
et s i s e o s s s o

[oneene s cas o S s

ote: System programmers'should see System Programmer's Guide for spe-
cialized operands.

=

DSNAME .

jdentifies the data set that is to be printed; VAM data sets must
pbe cataloged; BSAM data sets rust be defined within the current
task by a DDEF command or must be cataloged.

specified as: a fully qualified data set name.

STARTNO ,
specifies the byte position at which printing is to start for each

data set record.

specified as: from one to six decimal digits.

system default: printing starts with the first byte of each
record.

Note: In a VISAM line data set with no regions, the data begins in
position 9.

" ENDNO
specifies the byte position at which printing is to stop for each
data set record; this end kyte will be printed.

specified as: from one to six decimal digits.

system default: printing continues to the last byte of each logi-
cal record or until the printer line length is reached, whichever
occurs first. (The maximum printer line length is 132 characters.)

PRTSP
specifies the number of spaces to be skipped between lines.

Specified as:

EDIT - line spacing is controlled by a character in the first byte
position of each logical record. The control characters may
be either a FORTRAN control character (defined by American
National Standard FORTRAN, ANSI X3.9-1966) or machine code
(see Appendix D), but must be of the same type throughout
the data set. The control character in each record is
user-supplied.

1 - one space between lines.

2 - two spaces between lines.
3 - three spaces between lines.

218

Note: When EDIT is specified, the HEADER, LINES, and PAGE operands
must not be specified.

syster default: 1.

HEADER

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes,
or the entire first record, whichever is smaller, will be used as
the header.

Specified as: H.

system default: no header is printed.

LINES

PAGE

indicates the number of lines to be printed on a page.

Specified as: from one to four decimal digits; 9999 is the
maximum.

system default: 54 lines are printed on each page.

specifies that pages are to be numbered.

Specified as: P.

system default: no page numbers are assigned.

ERASE

specifies that the cataloged data set is to be erased from the
catalog after the printing operation is finished.

Specified as:

Y - erase
N - save

system default: no erasure is made.

ERROROPT

FORM

designates the action to be taken when an uncorrectable error is
found while reading a data set record. This option applies only if
the data set to be printed is on tape.

Specified as:

ACCEPT - erxor record is accepted.
SKIP - error record is skipped.
END - print operation is terminated.

System default: END is assumed.

designates the identification of the desired combination of paper
forms, print chain, carriage controcl tape, etc. See the installa-
tion manager for acceptakle values.

Specified as: from one to six alphameric characters.

System default: the installation's standard printer form, chain,
etc., is used (as specified at system generation).

Part III: Corrand Descriptions 219

STATION ‘)
indicates the RJE station jdentifier to which output is to be sent.

specified as: up to eight alphameric <haracters.

System default: ID from Task Common i3 used.

Note: This parameter <an be specified only if the user was assign-
ed this capability when he was joined to the system. ’

Functional Description: PRINT assigns the request to an independent
nonconversational task, to which the system assigns a BSN for possible
reference by the user. The specified data set is printed as it appears.
Invalid print characters appear as blanks in the output. Data set rec-
ords containing u read error (or an invalid control character, when the
EDIT option is us=d)} are printed in hexadecimal on SYSOUT. When the
data set resides on seven-track tape, the syster makes the character
adjustments required to ensure data validity.

If the user specifies a form number, the system includes that numbker in
its instructions to the system operator when the orinter is readied for
operation.

The data set name specified for a BSAM data set may or may nct be cata-
loged. If not, it is placed in the catalog until printing is completed
and then erased, regardless of the ERASE opticn. If the data set name
is cataloged, the ERASE option can he used to erase after printing is
completed.

When EDIT is specified, the first byte of gach logical record is assumed
to be the byte following the control character, which is not printed and
is not counted when determining where to beqgin printing a record.

If the data set to be printed was created via the CATA command, the
first byte of each record contains an indicator of the origin of the
record. PRINT translates the byte to a C i¥ the record was entered
through a card reader and to a klank if it was entered through the key-
board. Unless the STARTNC operand is specified, this byte is printed as
part of the record. 1f STARTNC is specified as 2, this byte is
bypassed.

cautions: When the user issues PRINT for a BSAM data set that is de-
fined in his task, the data set definition is released, and the data set
is disconnected from the user’s task.

The PRINT command is valid for BSAM, VSAM, and VISAM data sets only. It
cannot be used to print a member of a VPAM data set. However, a VPAM
member can be copied with the CDS command, and then the copy can be
printed.

A BSAM data set must reside on magnetic tape; a VSAM or VISAM data set
must not have undefined (format-U) format records.

PRINT should not be used for an uncataloged data set that is awaiting
bulk I/0, as PRINT automatically erases an uncataloged data set.

programming Notes: The user may use the BSN to identify his task when
using the CANCEL cormand.

To print an unlabeled tave, the user must precede the PRINT command with
a DDEF command and these operands:

DDNAMh=name,PS,DSNAME=&sname,DCBﬁ(RECFszQVﬁatdLRECL=length,

220

it

BLKSIZE=Lklock size,DEN=(0}{1]2},TRTCH={C|E|T}),UNIT=(TA,tape type),
VOLUME= (,volume serial number),IABEL=(,NL),DISP=OLD

The user can also obtain a data set suitable for printing by using the
WT command.

Example: The user wants data set T4U4.REMOVE to be printed single-
spaced. The entire logical record is to be printed; no header or page
numbers are wanted; 54 lines per page are wanted on standard printer
forms; and the data set's catalog entry is not to be erased.

User: print t4l.remove

System: BSN=0231

PRMPT Command

This command allows a user to manipulate and use the message file.

r . Bl 1
|Operation|Operand l
+ 1
| PRMPT |MsGID=message identification |
| | [, INSERTn=inserted character(,...11] i
| E R o d
M3GID
the identification of some message in the message file (SYSMIF).
If identification is less than eight characters, it is padded with
blanks on the right. If it is greater than eight characters it
will be truncated.
INSERIn

variable text to be inserted in the text of the message. The maxi-
mam text that can ke inserted in a single insertion is 40 charac-
ters. If no inserted text is given when the message text expects
some, the location of the inserts is indicated with three
asterisks.

Functional Description: The PRMPT command can generate messages from
the message file so that they can ke examined and comprehended. This
allows users to display the standard and extended forms of the message
easily. The command also allows substitution of inserts into the text
of messages and, with DISPLAY, allows messages to be issued from command
procedures (PROCDEFs).

Example: The user has a message in his own message file that reads:
ZO065 LITHUANIA $01 SWING $02

de can issue this message with the PRMPT command as:

User: prmpt zco065

System: Z0065 LITHUANIA #**% SWING ***
User : prmpt zoo065,does

System: 20065 LITHUANIA DOES SWING ##*#*
User: prmpt zoo65,can,tco

System: 20065 LITHUANIA CAN SWING TOO

PROCDEF Conmand

The PROCDEF command defines a user-written command procedure that con-
sists of other commands.

Part III: Corrand Descriptions 221

¥ v
| Operation|Operand
i 3

R

L T

| PROCDEF |NAME=procedure namel ,PROLIB=data set name)

L J 9

NAME
designates the name to be assigned to the corrand grocedure.
specified as: from one to eight characters. , This name must not
contain embedded blanks, commas, semicolons, equal signs, or
apostrophes.

PROLIB

specifies the library in which the PROCDEF is stored.

specified as: the name of a VPAM data set. If the specified data
set does not exist, it will be created. The PROCDEF is stored in
the SYSPRO member of the data set. '

system default: USERLIB.

Functional Description: When the user enters the PROCDEF command and
operand, the text editor is invoked to monitor PROCLDEF processing. The
user can use all of the text-editing facilities during command creation.
Unless the user suppresses line number prompting (DEFAULT LINENC=N), the
system prompts him to enter data by issuing lipe nunbers. For a new
procedure, the system issues a line number with the value of BASE (100
is the default value for BASE). For an existing procedure, an under-
score is issued; CLP is set to the first line in the PROCDEF.

Programming Notes: For a detailed discussion on defining command proce-
dures, see "Command Procedure®” in Section 4 of Part I11.

If you specify a data set, other than USERLIB, in which to store the
PROCDEF, you cannot execute that PROCDEF until you either redefine the
data set as USERLIB or store the PROCDEF in USERLIB.

Example: If COPYCAT is the name of the command procedure being defined,
the user enters:

procdef copycat
and the system replies:
0000100

I€f COPYCAT had been defined pieviously, the system®s prompt would have
been:

PROFILE Command

This command causes the task profile to replace the user profile in
USERLIB. i

—— ——

~ T
|operation|Operand
L 3

h—-L—d

v h i
|PROFILE | [CSW={N|Y}]
L i

CSW .
specifies whether the command symbols are to be saved with the task
profile. ‘

222

Specified as:

Y - the command symbol definitions are saved with the task profile.
N - the command symbol definitions are not saved with the task
profile.

Syster default: N.

Functional Description: When a PRCFILE command is issued, the task pro-
file is written into the user library, replacing the previous version,
and remains unchanged until another PROFILE command is issued or until
the USERLIB (SYSPRX) is erased. As a result, values entered by DEFAULT
or SYNONYM, and (optionally, if CSw=Y) SET commands, are made part of
the user profile that is in USERLIB and these values are then used to
set up the task profile whenever the user initiates a new task.

Caution: Any changes to the task profile made in the current task be-
fore the PROFILE command is entered become a part of the permanent
profile.

Progrémming Notes: This command is used when the user wants his current
task profile to be used for subsequent tasks.

Examples:

1. The user wants to save task profile with no command symbol
definitions. '

User: profile
System:

2. The user wants to save task profile including command symbols.

User: profile csw=y

PUNCH Commpand

This command schedules a job to punch an existing VSAM or VISAM data set
into cards on a high-speed punch.

—~ 1
|0peration|0perand |
I8 |
L 3)]
|pUNC IDSNAME—data set name(,] i
H | [,STARTNO=starting positionl,ENDNO=ending positionl }
| | [,STACK={1] 2} 3| EDIT] [,ERASE={Y| N}1] [, FORM=card form] |
L L — 4

DSNAME .
identifies the cataloged VSAM or VISAM data set to be punched.

Specified as: a fully qualified data set name.

[,] : o
specified, if following parameters are entered in positional nota-~
tion, to maintain system compatibility.

STARTNO

specifies the byte position at which punching is to start for each
data set record.

Specified as: from one to s8ix decimal digits.

Part III: Comnmand Descriptions 223

System default: punching starts with the first byte of each
record.

ENDNO

specifies the byte position at which punching is to stop for each
data set record. This end byte is punched.

Specified as: from one to six decimal digits. The value must be
greater than the value of the STARTNO operand.

System default: punching continues to byte 80 or to the end of the
record, whichever occurs first.

STACK

specifies the stacker select or edit option:

Specified as:

1 - pocket number Pl.
2 - pocket number P2.
3 - pocket number P3.

EDIT - the first byte of each data set logical record contains a
control character for stacker selection. This control
character may be either a FORTRAN control character or ma-
chine code (see Appendix D), but must be of the same type
throughout the data set. The contrnl character in each rec-
ord is supplied by the user.

Systen default: 1.

LRASE

FORM

specifies that the cataloged data set is tc be erased from the
catalog after the punch operation is finished.

specified as:

Y - erase.
N - save.

Systemr default: N.

designates the punch card form to be used for this punch request.

specified as: from one to six alphameric characters.

Note: The system does not check the specified form type; you must
convey the meaning of the specified form type to the system
operator.

system default: installation's standard card form is used.

Functional Description: This command results in the assignment of the

request to an independent nonconversational task, to which the system
assigns a BSN for possible reference by the user.

The specified data set is punched as it stands, with no code conver-
sions. The STARTNO and ENDNO options allow selection of any contiguous
field of up to 80 bytes of EBCDIC data from each record of the data set.

Input records containing an invalid control character, when the EDIT
option is used, are printed in hexadecimal fom on system output
{SYSOUT) .

224

If the user specifies a form number, the system includes that number in
its instructions to the system operator when the card punch is readied
for operation.

when EDIT is specified, the first kyte of each logical record is assumed

to be the byte following the control character, which is not punched and

is not counted when determining where to begin punching the record.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator of the origin of the
record. PUNCH translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the key-
board. Unless the STARTNO operand is specified, this byte is printed as
part of the record. 1f STARTNO is specified as 2, this kyte is

bypassed.

Caution: The PUNCH command is valid for VSAM and VISAM data sets only.
It cannot be used to punch a member of a VPAM data set. (In the latter
case, the member can be copied via the CDS command, and the copy can
then be punched.)

Programming Notes: The user may use the BSN to identify his task when
entering the CANCEL command.

If the user wamts to punch VISAM data sets, and he does not want to in-
clude the line number and keyboard/card reader character, he can specify
that the data to be punched begins in column 9 of the data set (columrns
1-7 are the line number; column 8 is the keyboard/card reader charact-
er). To do this, the user can specify:

punch dsname,startno=9

When the PUNCH command is used to punch a line data set, and the punched
deck will subsequently be used as card-reader input by the operator to
re-create that line data set, the line numbers in the original data set
should not be punched out. When the operator reads the cards into the
system, a line number is automatically prefixed to each record of the
line data set (see Appendix A).

Example: The user wants to punch characters 24 through 56 of each
EBCDIC record in data set GHOOTS9 and selects pocket 2. After comple-
tion of punching, the data set is to be saved. The usual card form is
to be used.

User: punch ghoots9,,24,56,2
System: BSN=0244

PUSH Command

This command saves the status of the interrupted prograrw.

L] T
jOperation|Operand
i i

O

¥ T
| PUSH | [SIRTEST={N|Y}]
i

1

Note: PUSH should be issued only after an attention interruption.

SIRTEST : . o
specifies whether the system will check for a user-defined SIR
routine.

Specified as:

Part III: Conmand Descriptions 225

N - the system does not check.
Y - the system checks. If a SIR routine exists, PUSH is canceled.

syster default: N.

Functional Description: PUSH saves the status of all general registers
and the PSw for the active program in a system save area. 1f SIRTEST=Y,
and if there is an active SIR routine defined by the user, the PUSH com-
mand is canceled.

Programming Note: The status of a program is automatically saved when
the user issues an ATTENTION interruption. The PUSH command allows him
to save the status of a program, modify the copy that he interrupted,
and execute both the original and the modified copy. (See Example 2,
below.)

Examples:
1. The user has interrupted his program; he wants to save the status:

User: (presses ATTENTION key)

System: !

User: push

The system saves the status of the prograwr in a system save
area.

2. fThe user now wants to change the copy that he just saved. Next, he
wants to run the altered copy, and then run the original copy that
was saved:

User: push (from Example 1)
Sys,User: set 5r=x"10' {alters program)
Sys,User: go (runs altered version)
Sys,User: go {runs original version)

QUALIFY Command

This command allows th2 user to reference the internal symbols within an
object module without using the fully qualified name.

3 1
|Operation|Operand
b 4

S

L] Ll
| QUALIFY |MNAME=[1ink-edited module nane. Jobject module name
i 1

MNAME
jdentifies an assemktled or compiled program (object module) and,

optionally, a module processed by the linkage editor.

specified as: an object module name, ocontrol section name, or
entry point name and, optionally, a link-edited module name fol-
lowed by a period and an object module name.

Functional Description: An ISD must have been requested when the origi-
nal program was assembled, compiled, and, optionally, processed by the
linkage editor. QUALIFY enables the user to reference, implicitly, the
program’s internal symbols wihtout preceding the internal symbols with
the appropriate object module, control section, entry point or link-
edited module name. QUALIFY loads the module if it is not currently
loaded.

226

Caution: Only one QUALIFY command can be in effect at one time. Each

QUALIFY command overrides any previous ones.

Examples:
1. The user wants to reference, implicitly, the qualified internal

symbols in the program named PGMF, which is a part of the link-
edited program named PGML.

User: gqualify pgml.pgmf
stem:

:

Note: The user may thereafter reference internal symbols in this
program in implicitly qualified form.

The user wants to qualify his internal symbols in program PGMF, but
he failed to request an ISD with his assembly or compilation.

User: qualify pgmf

The system informs the user that the module has no ISD. The user
must then use external symbols in his references to internal sym-
bols in PGMF.

The user wants to qualify his internal symbols defined in program
PGMF, which is part of the link-edited program named PGML. Howev~
er, in entering the QUALIFY command, he neglects to specify the
name of the original assemkly or compiler module.

User: qualify pgml

The system informs the user that he needs two levels of
qualification.

User: gualify pgml.pgmf
System:

REGION Command

This command is used to change regions when the user is editing a region

data set (see “EDIT Command™); it can also be used to specify editing of
a region data set when that information was not provided in the EDIT
command.

8 T
joperation|operand
L L

L J 1]
|REGION - | [RNAME=region name]
L 4

l-—-L_—J

RNAME

identifies an existing region or specifies the new region name to
be assigned to a line or range of lines. The value of the REGSIZE
operand in the user profile determines the maximum size of the

‘region names for the data set; region nares are padded on the right

with blanks or truncated to fit the region name field.

Specified as: an existing region name or as a string of 1 to 244

characters.

system default: a blank region name is assumwed.

Part III: Conrand Descriptions 227

Functional Description: A region data set is created with the EDIT com-
mand using the RNAME and REGSIZE operands. If the user wants to operate
on another region in the same data set, he can use the REGION command to
specify the new region. The system responds with an underscore if the
region exists or line numker 100 if the region is new to the data set.
The lines of data in a region data set are prefixed by the system with
the name of the region and the line number within the region. Like
EDIT, the REGION command prompts with line numbers in increments of 100
(if the value of INCR is 100), until a command preceded by a break
character is entered. The region name prefix is not issued when the
system prompts with line numbers, but is issued when the user displays
the lines with a LIST command.

caution: The system automatically reorganizes the regions of a data set
into alphabetically ascending order. A lanquage-processing command
(EDIT, PROCDEF, or PLI) must be invoked before the command is issued.

If editing commands with N1 and N2 operands are not preceded by a REGION
command, the system assumes the current region name if one exists or a
blank regicn name. After entering REGION, the user can reference any
line in the region or he can add new lines to the region.

To create a region data set, the user enters an ECIT comrmand with the
RNAME and REGSIZE operands. The system prompts with a line number.
Then, if the user wants to operate on a néw region in that data set, he
can enter the REGION command with the name of the new region.

If the user wants to create several region data sets in the same task,
and he wants them all to have a maximum region name length of 12, he can
first enter the DEFAULT command to set REGSIZE=12. He need not specify
the REGSIZE operand in EDIT. All of his data sets will be created as
region data sets with REGSIZE=12.

Note: Once a region data set is created, the user cannot change the
maximum region name length (REGSIZE) for that data set.

To terminate processing ky the REGION command, the user must issue a
command preceded by a break character after the text editor line number
prompt. The CLP is set to the last line entered plus the value of INCR.

Example: The user issues the EDIT command to create a new region, and
then he wants to operate on another new region: '

Usex: edit dsnam,regnam,regsize=8
Sys,User: 0000100 this is data

0000200 _region regnam2
System: 0000100

The system has terminated processing of the first region, REGNAM, in
data set DSNAM. It has initiated processing of region REGNAM2 in the
same data set.

RELEASE .Command

This command deletes the data set definition established by a previously
issued CDEF command. It may also ke used to separate and release one oOr
all data sets of a given concatenation (see description of DDEF in Ap-
pendix D for concatenation), or to remove JOBLIBs from the user's pro-
gram library list.

228

1 3 v B
|Operation |Operand |
L 4 J

|
{RELEASE }DDNAME=data definition namel ,DSNAME=data set name] |
| | [, {SCRATCH|BOLD}1 ([, (SCRATCH| HOLD}] |
| N L]
DDNAME

identifies the data set definition created by a LDEF cammand that
was issued earlier in the current task. The name either identifies
the data set definition to be released or identifies the concatena-
tion from which one or all data sets are to be separated and
released.

Specified as: the data definition name specified in a previous
DDEF command.

DSNAME
identifies one data set in a concatenated series. Only this data
set is to be released; the remainder of the concatenation is not
affected. :

Specified as: a fully qualified data set name.

System default: all data sets concatenated with the specified data
definition name are released.

Note: This operand is used only for concatenated data sets and has
no meaning in any other situation.

SCRATCH
specifies the private volume(s) on which the affected dataset(s)
resides is no longer required by the current task and may be dis-
mounted or handed off to another task. This applies only to a vol-
ume (s) for which no other data definitions exist.

Specified as: SCRATCH

Syster Default: See kelow under HOLD command.

HOLD
specifies that the private device(s) used for the volume(s) on
which the affected dataset(s) resides is tc be reserved for further
use by the current task. This is implied for any device(s) in use
for other data definitions.

Specified As: HOLD

System Default:
for ccnversational task -- SCRATCH alone
for non-conversational task -- HOLD alone.

Functional Description: RELEASE deletes the information defining the
data set for either a public or private data set. It also may release
for other use volumes and 1/0 devices currently assigned to a specified
private data set. If the data set is open, it is closed Lkefore the
defining information is deleted.

Wnen the specified data definition name applies to the data set defini-
tion of a JOBLIB, the JOBLIB is removed from the JOBLIB chain, and the
definition of the data set is deleted.

When the data set name of a concatenated data set is specified, that

data set is released and dropped from the concatenaticn. The rest of
the concatenation remains unchanged and may still be referenced by its

Part III: Command Cescriptions 229

data definition name. If DDNAME refers to a concatenation, and DSNAME
is not spcified, the user is prompted to enter a DSNAME.

A RELEASE command with the DSNAME parameter specified must ke issued for
each data set to be released from a concatenation.

When there is more than one data set in use on the private volume being

released, the device that contains the volume is not released until a
RELEASE command has been issued for the last data set on that volume.

Wwhen the user specifies DDNAME for a data set on a public volume, the
definition of the data set is deleted, but the device is not released.

Programming Notes: The RELEASE conmand does not erase or uncatalog.

The user should issue a RELEASE cormand when a data set is no longer
needed in a task. He must redefine the released data set when he wishes
to refer to it again.

The LOGOFF cormmand releases all data definitions in your task.

Examples:

1. The user wants to release a private data set identified by DLCNAME
INGO.
User: release ingo

The system deletes the current definition of the data set.

2. The user wants to release a concatenated data set that has three
data sets (DTAB1, DTAB2, and DTAB3). The associated DDNAME is
TABLES.

User: release tables

The system prompts the user to enter a DSNAME.
User: dtabl

Sys,User: release tables,dtab2

Sys,User: release takles,dtak3

3. The user wants to release a concatenated data set {(TURN9) from a
concatenation with DDNAME OVERT.

User: release overt,turn9d

The system releases TURNS fron the concatenation.

4. The user wants to release a job library with CLCNAME PROGTEST.
User: release progtest
The system removes the JCBLIB from the JOBLIE chain.

5. The user wants to release DDNAME SAM, on a private volume. BHe
wants to release the volume, but hold the device. He can enter ei-
ther of the following:

User: release sam, ,scratch,hold

orxr

User: xrelease sam, ,hold,scratch

230

erational Note: The following chart indicates volume and device dis-
position for the three valid combinations of SCRATCH and HOLD. It must

be remembered that SCRATCH is -ignored for any volume mounted for another
DDEF, and HOLD is assumed for any device on which a volume is mounted
for another DDEF.

r L3 v 1
| OPTIONS | © DISPOSITION | TAPE |
[N L . . d l
1 L]
| SCRATCH HOLD | VOLUME DEVICE | OPTION |
[$ + 1
| | s | {
| ===————- ~-=- | =--default according to task mode-- | -— i
| | | |
(1)| SCRATICH ---- | logical dismount release(3) | rewind l
| | - | |
(2)| -----=-- HOLD | retain reserve | none l
! I | |
| SCRATCH HOLD | logical dismount reserve | rewind & |
| | { unload |
F : L .|
| (1) = conversational default |
| (2) = non-conversational default |
| (3) = non-conversational reservation from SECURE is released i
L y |

REMOVE Command

This command deletes previously issued dynamic statements. (See "Dynam-
jc statement” under "Program Control" in Section 3 of Part II and the
description of the AT command earlier in this part).

-
peration|operand
i

S —

{o
: .
iREMOVE I{statement numbex{,...]|ALL}]
L L

statement number :
identifies a dynamic statement that is to be deleted.

specified as: the number assigned by the system when the dynamic
statement was entered.

all PCS dynamic statewents are removed.

Specified as: ALL

Functional Description: REMOVE permanently cancels all dynamic state-
ments whose numbers are specified as operands.

Ccaution: A REMOVE command cannot be used in a dynamic statement.

Example: The user wants to remove dynamic statements 10, 2, and 4.
User: remove 10,2,8

The system deletes the specified dynmamic statements.

Part III: Command Descriptions 231

RET Command

This command changes the attributes that were assigned at DDEF time for
a cataloged VAM data set.

L8 T N
jOoperation|oOperand |
b + 4
|RET |DSNAME=data set name ,RET=retention code 1
L i d
DSNAME

jdentifies the cataloged VAM data set whose attributes are to ke

changed.

specified as: a fully qualified data set name.
RET

specifies the attributes to be changed.

specified as: P or T; C oxr L; U or R, where:

- permanent storage
- temporary storage
- erase at CLOSE

- erase at LOGOFF

- unlimited access
- read-only access

maotnNl

System default: one code must be specified. When T is specified,
L is assumed; when P is specified, a null value is assumed for the
erase option.

Functional Description: The RET cormand modifies the RET field in the
data set descriptor (DSD), which contains information regarding the
storage type, deletion characteristics, and owner access attributes of
the data set that were specified in a DDEF command or DDEF macro.

caution: At least one of the codes must be specified. Otherwise, the
command is ignored.

A user may not issue RET for a data set he is sharing.

Even though the RET command has been invoked to give a user read-only
access to a data set, he may still issue an ERASE comrand for that data
set. .

A data set is not erased at logoff if a RELEASE command has been issued
for it and the retention code has keen specified as RET=T.

programming Notes: When the user changes the attributes of a data set
to permanent storage type (P) from temporary (T), an effective null str-
ing value is given to the deletion characteristic. When the access qua-
lification is not specified, no change to access is made.

Exanples:

1. The user wants to alter the attributes of data set ETHPRG, which is
temporary and unlimited and is to be erased at LOGCFF to pernanent
and read-only.

User: ret ethprg,pr
The system changes the attributes of ETHPLRG to permanent and
read-cnly.

232

The user wants to change the attributes of a permanent data set,
TEST1, to be erased at CLOSE.

User: ret testl,c

The system changes the attributes so that the data set will te
erased at CLOSE.

REVISE Commpand

This command specifies a line or range of lines in the current data set
or region which are to be deleted and replaced.
r T - 1
|Operation|Operand i
) 3
_ } ¥
| REVISE | INl=starting linel [,N2=ending linel[,INCR=increment]]
L AL — ¥)

N1

N2

INCR

identifies the line or first of a range of lines to ke deleted, and

subsequently replaced.

Specified as: a one-~ to seven-digit decimal line numker that may
be absolute or relative.

LAST - last line in the current region.

Syster default: the value of the CLP.

identifies the last in a range of lines to be deleted and subse-
quently replaced.

Specified as: a one~ to seven-digit decimal line number that may

be absolute or relative.
LAST -- last line in the current region.

System default: the value of N1.

designates the increment to be used for the replacement lines.

specified as: from one to seven decimal digits. BAn all-zerc in-

crement is not valid.

Systenr defaulilt: 100.

Functional Description: REVISE first deletes the specified line or

range of lines and prompts the user with line numbers for the replace-

ment

lines. When the user enters a line and presses the RETURN key,

REVISE continues line-number prompting until the range specified ky N1
and N2 is completed, ox a command preceded by a break character is
executed. When REVISE is followed by an EXCERP1 command (preceded by a
break character), the lines from the data set referenced by EXCERPT are
inserted in the specified range. CLP is set to the last line entered
plus the value of INCR. If the result exceeds the next existing line,
CLP is set to the next existing line number.

When REVISE is not followed immediately by EXCERPT or a data line or
lines, the command deletes the specified lines and sets the CLP to Nil.

The user is prompted if the numkter of insertion lines exceeds the upper
limit specified by N2.

Part III: Command Descriptions 233

caution: A language-processing command (ELCIT, PROCLCEF, or PLI) must be
issued befcre the command is issued.

Programming Notes: REVISE is functionally equivalent to an EXCISE com-
mand followed by an INSERT or EXCERPT command.

If the user specifies a nonexisting line in the REVISE command, or if
the line specified for N1 or N2 is the last line in the data set or
region, new lines are inserted into the data set with the starting line
number and line-number increment specified in the REVISE command. In
this case, REVISE operates the same as INSERT.

Exanmples:

1. The user wants to replace the existing line 300 with data lines, in
increments of 10.

User: revise 300,incr=10
Sys,User: 0000300 first replacement line
System: 00003190

2. The user wants to replace lines 200 through 550 with data lines, in
increments of 100.

User: revise 200,550
System: 0000200

Note: The increment of 100 is the default value of INCR. If more
than four lines are inserted, the fifth line number will exceed the
N2 value (assuming the next-higher line number is 600 or less). A

diagnostic message is displayed and the command is terminated.

RTRN Command

This command returns control to the user in corrand mode. All inter-
rupted source lists are canceled.

Lo . T
| Operation|Operand
4

4 +
| RTRN]
L

|

b o et e o

Note: Thexre are no operands.

Functional Description: The RTRN cormand, entered after the user causes
an attention interruption (by pressing the ATIENTION key), returns con-
trol to the user at the terminal. The usex is then in command mode, and
the interrupted source lists are forgotten. All SIR and AETD macro in-
structions are deleted.

Example: The user has interrupted a program or command string. Be does
not want to resume processing in that program or command string. Be
enters:

User: (presses ATTENTION)
System: !
User: RTRN

The system terminates processing of the interr:zpted program or command
string and returns control to the terminal.

234

SECURE Command

This command reserves all devices that are required for private volures
dur ing executicn of a ncnconversational task.

o e e e e -

10peration{0peraﬁﬁ
’i ’il' - - .

j | f (ca=number of devicesl,type of devicel)
|SECURE | {,...)
!

{{ (DA=number of devicesl(,type of devicel)

L
Notes: TA and Di must be specified in keyword forrmat. At least one of
the operands must be specified.

[SPEEERPY C Y |

system programmers should see System Programmer 's Guide for special
operands.

TA
designates the number and type of tape devices requested.

number of devices

specified as: a one- or two-digit decimal number.

system default: mnoe tape devices are reserved.

type of device

Specified au:

7 - seven-track tape, data converter not required.
IpC -~ seven-track tape with data-converter feature.
9p2 - 9-track tape with 800 bpi capability
9p3 -~ 9-track tape with 1600 bpi capability
9p4 - 9-track tape with 6250 kpi capability

system default: the type of tape specified at system generation.

DA
designates the number and type of direct access devices requested.

nunber of devices

specified as: a ocne- or two-digit decimal number.

syster defaults no direct access devices are reserved.

type of device

Specifisd as:

2311 - disk 3330 - 3330-1 disk
2314 - dask 3338 - 3330-11 disk

system default: the type of direct access device specified at sys-
tem generatlion.

Functional Description: SECURE reserves the specified devices as a
group, so that the task can proceed without pause, when the entire group
is available. &ny waiting for devices occurs when the SECURE comrand is
being executed. The devices that are reserved remain assigned to the
task until the task logs off, or until a RELEASE command is specified
with the SCRATCH option only.

part III: Command Descriptions 235

Caution: ‘The user must provide a SECURE command imrediately after the
LOGON command in every data set that is to be executed as a separate
nonconversational task and that refers to one or more private volumes.
This is also true for tasks initiated by EXECUTE or BACK. If SECURE is
not specified immediately after the LOGON command, the user®s task is
terminated. -

Programming Note: SECURE applies to nonconversational tasks only;: it is
never executed in a conversational task.

Examples:

1. The user has prepared a task for nonconversational execution that
requires one 3330-11 disk drive and three tape units (at 1600 kpi),
all for nine-tape. He prepares this SECURE command for insertion
immediately after the LOGON command:

secure (ta=3,9D3),da=1,333B)

2. The user's nonconversational task requires three 3330-1 disk drives
and seven tape units, three of them seven-track, and the remainder
nine-track (800 bpi). He prepares this SECURE command:

secure (da=3,3330), (ta=3,7),(ta=4,9D2)

SET Command

This command changes the contents of a data location.

=" T - TTTTTTT T T T T T h |
jOperation|Operand |
1 e {
| SET |{data location=value}l,...]]
Lo 1 —_— —— 3

data location
identifies a location whose value is to be changed.

Specified as: a symbol, hexadecimal location, register, or comrand
symbol.

value
specifies the value to which the data location is to ke set.

Specified as: an arithmetic expression, a constant, a character
string, or the name of a data location.

Functional Description: The SET command changes the contents of each
specified data location to the value specified on the right of the cor-
responding equal sign.

The expression is evaluated, using integer, floating-point, or logical
arithmetic. &All constants in an expression must agree in type. all
variables should agree in type but, if they do not, the type is assumed
by the system to be an integer (one, two, or four bytes), floating-point
(eight bytes), or hexadecimal (length defined implicitly or explicitly).
After SET is executed, a data reference in a suksequent command results
in obtaining the new value.

Cautions: Although the user may set one complex variable to the value
of another complex variable, no arithmetic can be performed between two
complex variables. This restriction also applies to variables in
packed-decimal number format.

236

The operand of the SET command may never refer to read-only or privi-
leged storage. Since the FORTRAN compiler automatically assigns the
read-only attribute to the control section containing instructions and
constants, the FORTRAN user cannot refer to the CSECT as the data loca-
tion of the SET command. When the expression contains more than one
operand, the lengths of the operands must be compatible (that is,

float ing-point variables must be four or eight bytes; integer and logi-
cal variables must be one, two, or four bytes). The length of the re-
sult of the expression should agree with the length of the data loccation
to the left of the equal sign.

The format X*C1C2C3*' is acceptable for hexadecimal representation; the

format 'ABC' gives the same result; however, C*ABC* results in a diag-
nostic message.

Examples:

1. The user wants to set two four-byte variakbles with qualified
internal symbols of I and K to the values of 33 and 176,
respectively.

User: set i=33,k=176
The system sets the values.

2. The user wants to set a six-byte field to read "system.®
User: set field="system'

The system sets the value at FIELD to E2ES8E2E3CSD4.

3. The user has two variakles that he wants to add, placing the result
in general register 8. Both variables were assigned hexadecimal
types in the assemkly program. variable X was defined as two bytes
in length; variable Y as eight bytes. The user wants to refer only
to the first two bytes of Y.

User: set 8r=x+y.(0,2)
The system sets the values.

4. The user wants to set a one-byte variable, SAM, to the binary value
'10010011°:

User: set sam=b'10010011°
The system sets the binary value.

5. The user wants to set the value of a variable (A) to 1. He wants
this value entered in his user profile. He enters:

User: set a=1
Sys,User: profile csw=y

SHARFE Corrand

This command allows the user to share another user’s data sets.

T
| Operation|Operand
L i

L 3 T
| SHARE |DSNAME=data set name,USERID=owner's user identification
| | {,OWNERDS={owner®s data set name|*ALL}]

| I L ————

l-——-tL....J

Part III: cCormand Lescriptions 237

DSNAME
specifies the name by which the sharing usexr refers to the data set
or data sets which he is going to access. This data set name
becomes an entry in the sharer's catalog.

specified as: a fully or partially qualified data set name.

USERID
identifies the owner of the data sets to be shared.

specified as: the owner's user identification.

OWNERDS
identifies the data sets to which the user wants access.

specified as: the fully or partially qualified data set name as-
signed by the owner.

*ALL - the user wants access to all the owner's cataloged data
sets.

System default: *ALL.

Functional Description: An entry is made in the sharer's catalog, under
the data set name specified by DSNAME, pointing to the owner's catalog

entry for OWNERDS. The pointer is to the intial entry in the owner'’s
catalog if "*ALL" is specified.

The user may issue the SHARE command before the owner has issued the
PERMIT command to grant access to his data set or data sets. The PERMIT
must be issued, however, before the user can reference or access the ’
owner's data sets.

cautions: The OWNERDS operand must have the same value as the DS RAME
operand the owner uses when issuing his PERMIT conmand.

To avoid the possibility of violating the length restriction for data
set names, the sharer should not enter a DSNAME operand that is longer
than the OWNERDS operand. similarly, if "*ALL" is used, the sharer must
be certain that the total number of characters for DSNAME plus any data
set name in the owner's catalog does not exceed 35.

Programming Notes: When CWNERDS in the owner's catalog is a partially
qualified data set name, the sharer refers to each shared data set by
appending to the data set name specified by DSNAME the same rightmost
name or names that the owner assigned (in his catalog) to that data set.
For example, if OWNERDS gpecifies a catalog entry for the partially
qualified data set name A.B, and the sharer gives W.X in the DSNAME
operand, he refers to the owner's data set A.B.C.D as W.X.C.D.

The sharer's catalog entry for a shared data set is not removed when the
owner erases or deletes that data set from his own catalog. Sharers
must update their own catalogs by using the DELETE command.

Examples:

1. The user wants to reference, by means of the name GREYX, the cata-
log entry for data set M.LOGl, to which he has been granted access
by owner MICHAELZ.

User: share greyx.michael2,m.log1

The system makes the entry in the sharer's catalog.

238

2. The user has been granted access to all of owner JOSEPH24's cata-
loged data sets. He wants to use the name 2 to link his catalog to
the initial entry in JOSEPH24's catalog.

User: share z,joseph24,*all
The system makes the entry in sharer’s catalog.
The user now can reference specific data sets belonging to

JOSEPH24. For instance, if JOSEPH24's catalog has data sets name
A.A, A.B, and A.C, the user refers to them as Z.A.A, 2.A.B, and

Z.A.C, respectively.

SPACE Command

The SPACE command causes the SYSOUT to be spaced the specified number of
lines.

r . T 1
|Operation|Operand |
b + 4
| SPACE | NUMLINES=(number lines to space) |
L L J
NUMLINES

number of lines to space the SYSOUT

Specified As:

1 - space 1 line (insert 1 blank line)
2 - double space (insert 2 blank lines)
3 - triple space (insert 3 blank lines)

System Default: 1 space 1 line.

Functional Description: The SPACE command module issues a "GTWRC' macro
Wwith the appropriate carriage control character to cause the specified
number of spaces (blank lines) to appear in the sysout.

Example: User wishes to separate the output from command A, from the
output of the next command B.

User: command A
SPACE 3
command B

System: cese-s-Output from A.....

(three blanks lines inserted
by the SPACE command)

eeses.0utput from B.....

STACK Command

This command displays all active, user-invoked module names displayed in
descending order beginning with the most recent module name.

r v
|Operation|Operand
L I

v
| STACK
L

o e o

Part III: Command Descriptions 239

Note: There are no operands.

Functional Description: The system displays the names of all user-
invoked modules that have been interrupted and are now saved for later
execution. The most recent module is displayed first. If a SIR routine
is active, the user is notified; the SIR module name does not appear in
the module-name display.

Example: The user has interrupted his source list. He wants to see
what modules (or commands) he has interrupted:

User: stack

The system displays the active module or command names. The name
at the top is the most recently interrupted program.

STET Command

See "DISABLE, EMABLE, POST, and STET Commands . *

STOP Command

This command suspends execution of an object program and optionally (if
LIMEN=I) prints out the current instruction location and program status
information.

L _ T
|Operation|Operand
i 3

1]

}
| sTOP |
L L

b e o e o

Note: There are no operands.

Punctional Description: The STOP cormmand causes the cutput of two units
of information at the user'’s terminal.

1. Current location in the object program; that is, the instruction
location, expressed symbolically, at which execution is stopped.

2. Program status information (for example, the condition code, pro-
gram mask, and instruction length code).

If the internal symbol dictionary (ISD) is not available, the symbolic
instruction location is expressed in terms of the control section name
and a hexadecimal offset. If the ISD is available, the location is '
expressed in terms of an internal symbol plus hexadecimal offset. The
nearest internal symbol, plus an offset (in bytes) is output for assem-
bler language programs. For FORTRAN programs, it is the nearest state-
ment numper, with an increment to indicate which statement after the
numbered statement has control.

caution: STOP should appear last in a dynamic statement, because any
subsequent commands are ignored, and no diagnostic is issued.

programming Note: After an okject program has been halted, the user can
cause resunmption of execution with the GO command.

Exaﬁples: (LIMEN has Lteen defaulted to I)

1. The user wants to learn the status of hi. program wnen execution
reaches a specified point.

240

User: at ftnpgm. 100 (4) ;stop

When execution reaches FINPGM.100(4), the system replies by giving
staterent number assigned to above statement. The system also
gives program status information.

2. The user interrupted his FCRTRAN object program during execution by
pressing the ATTENTION key at his terminal. He wants to know which
statement was being executed. The user requested an ISD as an
option during compilation.

User: stop
System: STOP AT FTNPGM.100(4) PSW 1 1 0 OOO03EOQF4

STRING Connand

This command displays commands and program calls not yet executed from
the current source list.

r T
|Operation|Operand
i

g t
| STRING |
L - L
Note: There are no operands.

A e]

The STRING command works only if it is issued immediately following an
attention interruption.

Functional Description: STRING displays statements, from the current
source list, that have not yet been processed.

If the user issues an attention interruption while the system is execut-
ing a PROCDEF, he receives a "PROCDEF ACTIVE™ message. Then, if he
issues an EXIT, or presses the carriage return (to return control to his
source list), the remaining commands in the PROCDEF are executed before
the displayed source list is processed. The individual commands, in the
PROCDEF, are not displayed ky STRING.

If the system is processing an OBEY when the STRING command is issued,
the user receives an "OBEY ACTIVE" message before the socurce list is
displayed.

Example: The user interrupts his program, and then he wants to see what
commands have not been processed from the source list: .

User: (presses the ATTENTION key)
System: !
User : string

The system displays unprocessed commands from current source list.

SYNONYM Comrmand

This command renames commands or command statements, keyword operands,
and PCS operands.

r T
OperationjOperand
L p L

1 § T
| SYNONYM |{term=[valuell(,...]
L i

b ooun

Part III: Comrand Cescriptions 241

term
designates the new name of a command, keyword, or PCS expression.
This is the synonym.

specified as: a normal or quoted string from one to eight
characters.

value
specifies the value of the term that is to be used when the term is
referred to. This value overrides any string value previously
equated to the term. This is the 0ld name.

specified as: a normal or quoted string; maximum length, 244
bytes.

Systenm default: any previously assigned synonym term is deleted.

Functional Description: The syster adds, replaces, or deletes entries
in the user's dictionary, according to the parameters of the SYNONYM
command. When the user has assigned a value to an operand with the
SYNONYM command, he can then enter a conrmand or parameter which has a
synonym value and the system uses that synonym value rather than the
command or parameter entered. Synonyms may be equated to other
synonymws.

The synonyr and its value are only valid for the remainder of the cur-
rent task, unless the user's task profile is wade permanent by his issu-
ing the PROFILE command. (See the description of the PROFILE command in
Section 6 of Part II).

caution: The user should ke careful to avoid eventually equating a
synonym to itself when creating a synonym chain. This creates a loop,
which is broken by the system after an excessive number of synonyr
searches.

Programming Note: The SYNCRYM comnmand can be used to delete a synonym
entry that was previously defined. The user enters the SYNONYM c ommand
and equates the operand he wants to delete to a null string by pressing
the carriage return (SYNCNYM A=). When a user creates a synonym, he can
still refer to the command, operand, value, Or expression by its origi-
nal name.

Examples:
1. The user issues this command statement.
User: synonym a=k,k=c,c=d4,d=e;a
The system calls the procedure or prograr nared E.
Note: The value of last SYNONYM issued overrides previous values.

2. The user executes a series of commands.

synonym pg=pgapars

progra pg=x,Y.z

The first SYNONYM ccmmand defines a synonym for one of the valid
keywords of PROGRA. When the command PROGRA (which was previously

defined by the user as a BUILTIN) is called, synonym substitution
occurs, and the command is executed as:

progra pgapars=x,Y.z

242

3. The user creates an abbreviation for the EXECUIE command.

synonym x=execute

when he enters X as a command, the system invokes the EXECUTE
command.

4. The user wants to nullify the synonym created in Example 3 above:

synonym X=

TIME Command

This command establishes the time during which a task can be executed.

3

m A |

|Operation|operand |
L i ————
L 3 T N

| TIME | IMINS=minutes])]
L 1 y |
MINS

specifies the number of minutes of execution time before the timer
interrupts the task.

specified as: a decimal nhmber greater than 0 and less than 451.

System default: the value assigned at syster generation.

Functional Description: TIME is invoked automatically as a part of the
initialization of the user's task, when a time specified at system .
generation is used to set the timer. When the TIME command is issued by
the user, the value of the timer is reset. The value of the timer is
always the value of the last-issued TIME command. Time is only accumu-
lated against this interval while the user's task is actually executing.
Wwhen the task is in a WAIT state or the time-slice has expired, nc time

is charged.

At the end of the time, if the task is conversational, a message is is-
sued, and control returns to the user in command mode. If the task is
nonconversational, the task is terminated abnormally.

Programming Notes: The user may issue the TIME command at any tire.
The maximum value he can specify is 450 (7 1/2 hours}.

Example: The user wants to set a four-minute time limit for execution
of his task.

User: time 4

The system resets the timer.

TRANSLAT Ccmmand

The TRANSLAT command is used to set the user's input and output transla-
tion tables.

r . T
|Ooperation|Operand
i L

A W

r T
| TRANSLAT | TYPE,FROM,TO,USN,CP
L L

Part III: Command Descriptions 243

TYPE ‘
specifies which takle is to be set, input or output.

Specified As:
OUT or O for output translation table
IN or I for input translation table

FROM
is a list of characters which are to be translated to the *TC'
character. Quotes are required as defined in rules for character
strings.

specified As: A single character or string of characters enclosed
in parentheses and separated ky commas. Hexadecimal values should
be in the X°NN* format where NN is the hexadecimal value.

TO
is the character the *FROM' characters are to be translated to.

specified As: A single character -- quotes are required as defined
in the rules for character strings -- or a hexadecimal value in the
format X'NN' where NN is the hexadeciral value fcr the character.

USN
for the MTT Administrator, the numker of the user for whom the com-

mand applies

specified As: A decimal number between 0 and 128.

System Default: task owner's sysin/sysout.

cp '
specifies which sysin or sysout is to be changed -- currently not
supported.

Functional Description: Each sysin/sysout has a set of translate tables
which users can tailor to their own terminal. All system input and out-
put is translated by these takles. The user can achieve the same result
by using SYSTRIN and SYSTROUT with the MCASTAB command. The difference
between TRANSLAT and the SYSTRIN/SYSTROUT mechanism is that the TRANSLAT
change is effective immediately and the SYSTRIN/SYSTROUT takbles are not
changed.

Example: The user wishes to change all slashes (/) to commas {(,) on
input:

User: TRANSLAT TYPE=I,FROM=/,TO=",'
H DISPLAY *///77°

em: sor000

(4)]
0]
g

Now on output the user wants all cormas to be printed as slashes:

User: TRANSIAT TYPE=CUT,FROM=',’',TO=/
User: DISPLAY ‘//7/77°
Systern: 77777

on output the user decides to have certain unprintakle characters
printed as a period (.):

User: TRANSLAT TYPE=0,FRCM=(X'OO',X'Ol',x'02',X'20',X'21',X'22',
X'23°,X'24%) ,TO="."

Now, any of the *FROM' characters will be printed as a period (.) on
the sysout.

244

TRAP Command (System 370 Only)

——

This command requests notification when execution of an object program
causes certain events to occur. TRAP also designates the class of event
and range of object program instruction locations in which the commands
following TRAP in the dynamic statement are to be executed.

Storage Class:

b e s e

r R h | 1
|Operation|Operand |
b - -4
| TRAP |[FETCH]STOREIREF},[location{:location}] |
L 1 - 3
General Register Class:

1 1 R T 1
|Operation |Operand 1
- + i
| TRAP |GR, {nR, ... |nR:nR} |
[i 3
Branch Class:

L] N T

| operation|Operand

I';— J - - 3

| TRAP |ERANCH{,location[:locatzon}{.locatxou{:locatlon}}}

t L -

FETCH

Specifies that TRAP is to monitor instructicn fetches within the
location range specified.

STORE
Specifies that TRAP is to monitor data stcres within the location
range specified.

REF
Specifies that TRAP is to monitor both fetches and stores within
the lccation range specified.

GR
specifies that TRAF is to monitor changes in the contents of the
general registers specified.

BRANCH
Specifies that TRAP is to monitor successful branches from the
first location range specified into the second location range
specified.

location
Specifies location or range of locations within the task's virtual
remory .
specified as: An internal or external symbol, with or without off-
set or subscript, or a hexadecimal address.

nR

Specifies a general register or range of general registers.

Specified as: An integer from 0 to 15 inclusive.

Part III: Conrand Descriptions 245

Functional Description: TRAP Lecomes effective, subject to. the ranges
specified in the command, at the end of the execution of an instruction

when one or more of the following events has occured: 1) instruction
fetch, 2) data stored, 3) change in the contents of a general register,
4) successful branch. A command statement containing a TRAP is called a
dynamic statement. Unly one TRAP may be jncluded in a dynamic state-
ment, and it must be the first command in the statement. The systen
assigns a mumber to each dynamic statement. This number may be
referenced by the REMOVE command. Only one TRAP in each of the three
classes may be outstanding at any point in time. The system will auto-
matically remove a TRAP statement if an attempt is"’ made to issue mrore
than one TRAP in one class.

coincident events may occur and are processed in the following order:

1. Storage
2. General Register
3. Branch

Unprocessed coincident events are lost if program execution is resumed
by a CALL or BRANCH statement.

When a TRAP command is executed, a standard output (including the in-
struction location where the command became effective, program status
information, and the dynamic staterent number) is presented to the user.
if LIMEN is not set to I, only the dynamic statement mmber is dis-
played. The program status information includes the virtual storage
location of the instruction being executed, the instruction length code,
the condition code, and the program mask. Execution of a TRAP comrand
is disabled during execution of privileged system programs. Also, SVC
instructions and instructions that cause program interrupts to occur
will not cause a TRAP command to be executed.

The counter, referred to by the special character %, is assigned to a
dynamic statement and is incremented by one when the TRAP statement is
executed. The counter is incremented even when the dynamic statement is
conditicnal. The counter may ke used as an operand in other PCS com-
mands within the statement. The TRAP command alone will interrupt, but
not stop, program execution.

prograrming Notes: If TRAP specifies FORTRAN statement numbers as loca-
tions, the numbers must designate executable FORTRAN statements and not
format statements. The determination of whether a successful branch
falls within a specified location range in a TRAP branch statement is
performed interpretively ky PCs for all successful branches. Therefore,
this statement should be used with care.

Example: The user wants to be informed when his program alters the con-
tents of general register 12.

To accomplish this,

User: - trap gr,l2r

——

System: 0001
Execution of the program begins. Wwhen general register 12 is altered,
the user is notified. For example, the system prints out the following
1ine (assuming LIMIN=I):

System: TRAP SWTC. (X*2E"') PSW 2 0 F 00335032 0001
In this statement

SWIC. (X'2E*) is the location of the jpstruction that altered gener-
al registet 12. n that altered general register 12.

2u6

e

PSW 2 0 F 00335032 is the program status.
0001 is the dynamic statement number assigned by the system.

Note: If LIMEN had not keen set to I, only 0001 would have been printed
by the system.

TV {Tape to VAM) Command

This command retrieves and writes into a VAM volumwe, one or more data
sets previocusly written on magnetic tape by the VT command.

—
b -
|1V |DSNAME1 =tape data set name [,DSNAME2=vam data set namel, ¥,

| [,OVERLAY= Y|N)
| [,RETAIN= Y|N]
| (,FROMID=userx identification]

v

| OperationjOperand
}

|

{ | [,TOID=user identification]

1

S

|
!
L

* This position has no meaning for the TV command but is present in the
BPKDS for ease of coding.

DSNAME1
identifies, in the absence of a previously defined DDEF command
with the DDNAME of DDTVIN, an existing physical sequential data set
residing on a nine-track tape that is to be restored to VAM on di-
rect access storage. The data set must already be defined by a
DDEF command in the current task or must be cataloged.

Specified as: the fully qualified name with which the data set was
defined or cataloged; if when using the VT command this name was
preceded by an asterisk, this data name must be preceded by an
asterisk here.

Where a previously defined DDEF command with a DDNAME of DODTVIN
exists, it identifies one of all data set names that are tc be
restored to direct access storage.

specified as: the fully qualified data set that will be located on
the volume(s) specified by the DDEF command with the DDNAME of
DDTVIN, or

*pLL; all data sets on the volume(s) specified by the DDEF command
with DDNAME of DDTVIN will be processed.

DSNAME 2
specifies the name under which the data set will be restored. This
data set does not have to ke defined in the current task unless the
data set is to be restored to a private VAM volume.

Specified as: a fully qualified data set name, or *DSNAME1l, the
data set name that was retained on tape is to be used for the name
of the data set that is to be restored on direct access storage.

system default: a name will be generated by the system in the
form:

$D.Dnnnn. dsnamel

and used as the VAM data set name. Truncation, if required, will
be performed from left to right to allow the insertion of $D.Dnnnn.
The $D qualifier will allow the user to reference all such data
sets created by TV by partially qualified data set name.

vart III: Conrand Descriptions 247

OVERLAY
specifies that the output data set will be overlayed if it already
exists and the data set attributes (DSORG, RECFM, LRECL, RKP, KEY-
LEN) for the two copies are the same.

specified as: Y - overlay to be made.
N - overlay not to be made.

system default: N - no overlay to be made.

RETAIN
specifies that the change and reference dates of the input data set
are to be retained with the output data set.

specified as: Y - input dates are to be retained.
N - current dates are to be retained.

syster default: the current dates will be retained with the data
set copy-.

FROMID
specifies the user identification prefixed to the name of the input
data set.

specified as: One-to-eight alphameric characters, or *ALL; all
userids retained on the tape are to be processed.

System default: the user jdentification associated with current
task is assumed.

TOID
specifies the user identification to be associated with the cutput
data set. '

specified as: For a user, this must be the user identification as-
sociated with the current task.

For the system manager, any user identification currently joined to
the system.

For a system administrator, any user identification currently
joined to the system Ly him.

*FROMID; the original user identification saved on tape is to be
used. It must be user identification currently joined to the sys-
ter and one which the user has authority to specify.

Functional Description: For each successfully copied data set, the user
is informed of the names of the input and output data sets, and the file
sequence and volume serial numbers used. Any failure to copy success-
fully results in a diagnostic message and cancellation of the command.

Generation indexes will be created as necessary for generation data
groups not previously defined in the system.

The DDEF command with DDNAME of DDTVIN must specify PS as the data set
organization (DSORG), nine-track tape as the residence volume {(UNIT) and
unlabeled tape (LABEL).

An entire tape may be restored to a private VAM volume through the use
of a DDEF command with DDNAME or DDTVOUT. This DDEF must specify VaM
data set organization (DSCRG) and identify the device type (UNIT) and
volumes (VOLUME) required to contain the tape data sets. The DDEF will
be used only when a DDEF with DDNAME of DDTVIN is present and DSNAME1l is
specified as *ALL.

248

Note: When all data sets (DSNAME1=¢ALL) on a tape volume are to ke pro-
cessed, DSNAME2 must be specified as *DSNAMEL or be defaulted.

Examples:

1. The user wants to restore data set ABC onto a private VAM volume
(MYVOL1l) as XYZ.

User: ddef duml,vp.xyz,unit=(da,231ﬂ),vclume=(,myv011)
tv abc,xyz

System: (copies ABC onto private volume MYVOL1l as XYZ)

2. The user wants to locate data set SOURCE.MYDS on volume MR9024 and
restore it to public storage as SOURCE.MYDS. The data set name LOG
is used to fill the CDEF requirements for a dsname value. It may
be any data set name that will allow DDTVIN to be defined.

User: ddef ddtvin,ps,log,unit=(ta,9),Vblume=(,MR902U),-
LABEL=(,nl);tv source. myds,*DSNAME1 ,overlay=y

System: (locates SOURCE.MYDS and restores it to public storage)
3. The usef wants to restore all data sets from volume MR9024.

User: ddef ddtvin,ps.zip,unit=(ta,9),volume=(MR902u),—
LABEL=(,nl);tv *all,*DSNAME1 ,overlay=y

Systermr: (restores all data sets from volume MR9024)

UNLOAD Command

This command removes a module and all other modules tc which it impli-
Ccitly or explicitly refers from virtual storage.

r T
| Operation|Cperand

l.
| UNLOAD | INAME=entry point name]l
e 1

b o ol e

NAME
identifies the module to be unloaded.

Specified as: a module name or external entry point without
offset.

Systen default: the last module referenced by the system is
unloaded (see below).

Functional Description: The UNLCAD comrand invokes the dynanmic loader,
Specifying the explicit symbol that is specified in the NAME operand of
the command. If NAME is not specified, the last module referred to by
one of the following commands is unloaded: PLI, ASM, LNK, FTN, LCAD,
UNLOAD, CALL with a specified module name, or an implicit call.

The specified object module is unloaded‘from virtuwal storage. Any
object modules that are referred to only by that specified module are
also unloaded.

The specified module is not unloaded if other object modules are cur-

rently referring to it. The user is informed of this in a system mes-
sage, so he can re-issue the UNLOAL command later, if desired.

Part III: Command Lescriptions 249

Caution: When a module is unloaded, all PCS AT statements are reroved
for that module (reloading the module does not replace these AT state-
ments). The user is notified of the AT statements that are removed.
However, the AT number counter is not reset toc 0 unless all AT state-
ments are removed from all modules.

Programming Note: An object module that is called by a direct call is
not automatically unloaded upon exit. The UNLOAL command can be used to
remove these modules from virtual storage. .

Example: The user wants toc unload a module named ABC.
User: unload abc

The system unloads ABC and all modules to which ABC implicitly or expli-
citly refers.

UPDATE Comrrand

This text-editing command adds or inserts the data lines entered at the
terminal into the current data set or region.

1 T
|Operation|Operand
4

S R

R
| UPDATE |
L L

Note: There are no operands.

Functional Description: UPDATE unlocks the keyboard to prompt the user
to enter a line number, a klank or tab, and data. The lines of data
entered by the user are inserted in the current region at the specified
line number. If the user specifies a line number that already exists in
- the region, the new line overlays the old line.

UPDATE is terminated when a command preceded by an underscore is issued.
The status of the CLP does not change during execution of UPDATE.

Cautions: When issuing insertion lines, one space or tab must be
entered between the line number and the text of the line. Excessive
tabs or spaces are treated as text.

A language-processing command (EDIT, PROCDEF, or PLI) must be issued be-
fore the command is issued.

Prograrming Notes: UPDATE is equivalent to a series of INSERT or REVISE
commands. UPDATE is intended primarily to allow the insertion of arbi-

trary line numbers; INSERT and REVISE are designed for consecutive line

insertions.

Example: Assume the current line location is in the region ABC, which
contains 10 lines, numbered 100 through 1000 in increments of 100. The
user wants to insert a line between lines 200 and 300 and one between
lines 600 and 700. He also wants to replace line 500 with a new line.

User: update

System: (unlocks the keyboard)

User: 250 datal .

System: {inserts line 250 between 200 and 300 and unlocks the
keyboard)

User: 650 text

System: {inserts line 650 between 600 and 700 and unlocks the
keyboard)

User: 500 more data

System; {replaces old line 500 with new line and unlocks the
keyboard)

250

User : _insert 1100

System: {terminates execution of UPDATE, positions the CLP to
line 1100, and prompts the user to enter line 1100 which
does not yet exist)

USAGFE. Command

This command presents to the user the statistics accumulated in the sys-
tem that relate to his use of system resources.

~— - mEmmmm—— h |

|operation|Operand |

po —

| USAGE
L
Note: There are no operands.

Manager's and Administrator's Guide and Systen Programmer®s Guide list
special operands for managers, administrators, and system programmers.

Functional Description: The accounting statistics for the specified
user identification, which include, the user's ration (that is, the mrax-
imum amount of each resource allowed for the usex}), the accumulative
statistics in the user table, and the usage statistics for the current
task are tallied and presented to the user. Conversationally, the data
set is presented at the terminal; nonconversationally, in the SYSCUT
data set.

The user's accounting statistics are displayed always. The accumulative
statistics cannot be reset to zero without displaying all of the user's
accounting data. Furthermore, the display of his statistics occurs ke- -
fore the accumulative data is reset to zero, although subsequent entry
of the USAGE command displays the statistics with their new values.

Three types of statistics are presented: accumulative statistics
reflect total usage of resources from the time the user is joined to the
system to the present, current statistics reflect usage during the pre-
sent task, and the ration which reflects the maximum amount of a
resource allowed for the user. The statistics displayed are summarized
in Appendix H.

The information is presented in the following format:

/TEMP STOR=ration;current;accum
/PERM STOR=ration;current;accum
/DA DEV=ration;current;accum
/MAG TaP=ration;current;accum
/PRINTERS=ration;current;accum
/RD-PUN=ration;current;accum
/TSS TASKS=ration;current
/BULKIN=accum

/BULKOUT=accum

/CPU TIME=ration;current:accum
/CONN TIME=ration;current;accum

Statistics with zero value are not presented.

VT (VAM To Tape) Command

This command copies a VAM data set to magnetic tape as a physical
sequential data set. Used with the TV (TAPE TO VAM) command, VT allows
the user to store VAM data sets on magnetic tape and retrieve themr at a
later time.

Part IXI: Command Descriptions 251

i0perationIOperand
- |
;;T IDSNAMEl=vam data set namel ,DSNAME2=tape data set name|*DSNAME1l],

| { ,ERASEDS1= Y|N],*,
| {,RETAIN= Y|N]

| £ ,FROMID=user identificationl
| {,TOID=user identification]

{ {,CATDS2= Y|N]
L

o e

bt e e e e e o S s el

* This position has no meaning for the VT command but is present in the
BPKDS for ease of coding.

DSNAME1 ’
identifies the cataloged VAM data set to be written on magnetic
tape.

Specified as: a fully qualified data set name.

DSNAME2
specifies the name to be a551gned to the magnetic-tape copy of the
data set.

Specified as: a fully qualified data set name; if the name is pre-
ceded immediately by an asterisk, the tape data set will not be
cataloged, or

*DSNAME1, the copy is to retain the same name as the original data
set.

System default: for the first VT command, the data set name given
in the preceding DDEF command, with the LLCNAME of CDVTOUT is
assumed. For subsequent VT commands, the tape data set name will
be modified to the form of

$T.Tnnnn.dsnamel

and used as the tape data set name. Truncation of the given name
to allow the insertion of $T.Tnnnn (where nnnn is a unique nurber
assigned by the system to assure data set uniqueness) will be from
left to right. The gualifier $T will allow the user to reference
all such data sets created by VI by partially qualified data set
name. If this operand is specified as *LSNAMEl1l the tape data set
name will be the same as the vam data set name and no cataloglng
will be performed.

ERASEDS1
specifies that the VAM data set is to be erased after the data set

Specified as: - erase after copy

Y
N - no erase after copy

System default: N - no erasure will be wade.

RETAIN
specifies that the change and reference dates of the input data set
are to be retained with the output data set.

Specified as: Y - input dates are to be reotained.
N - current dates are to be retained.

252

e

System default: the current dates will be retained with the data
set copy.

FROMID
specifies the user identification prefixed to the name of the input
data set.

Specified as: For a user, this must be the user identification as-
sociated with the current task.

for the system manager, any user identification currently joined to
the system.

For a system administrator any user identification currently joined
to the system by him.

System default: the user identification associated with the cur-
rent task is assumed.

TOI1ID
specifies the user identification to be associated with the data

set on tape.

Specified as: One-to-eight alphameric characters, or

*FROMID; the FROMID is to be retained on tape as the TOID.

Systemr default: The user identification, associated with the cur-
rent task is assumed.

CATDS2
specifies whether or not the data set on tape is tc ke cataloged.

Specified as: Y - the tape data set is to be cataloged.
N - the tape data set is not to be cataloged.

Functional Description: The VT command can be used to copy data sets
serially on tape without issuing a new DDEF command each time. Once the
user has identified the output data set by a DDEF command with DDNAME of
DDVTOUT, VT accepts each new request, updates the required control in-
formation, and copies the specified data set (DSNAME1l) as the next
sequential file of the existing tape. The data set written out will be
cataloged, if indicated, as though a new DDEF had been issued for each
data set copied.

The DSNAME2 and TOID values will be retained as part of the tape data
set. It may be used by the TV command when the data set is restored to
direct access storage.

Although the user may specify that the output data set be cataloged
(CATDS2=Y), DSNAME2 will not be cataloged where #*DSNAMEl is specified,
the name is preceded by an asterisk, the name is already cataloged or
the TOID is not for a userid currently joined tc the system.

DSNAME1 will be erased (FRASEDS1=Y) only if the data set is copied
successfully.

Labels are written on the magnetic tape as specified in the user's DDEF
for DDVTOUT. 1If the data set is to be placed on an existing tape, the
label ing must be consistent with the previous contents cf the tape.
Note: Before the initial VT command in a task, a DDEF command mist ke
issued for the tape data set with DDNAME of DEVTOUT.

Part IIIX: Conrnand Cescriptions 253

For each successfully copied data set, the user receives a message indi-
cating the names of the input and output data sets and file sequence and
volume serial numbers used. Any failure to copy successfully results in
a diagnostic message and cancellation of the command.

Prograrming Notes: The DDEF command describing the DDNAME of LLDVIOUT
must specity PS as the data set organization (CSORG) and a nine-track
tape as the residence volume under the UNIT operand. In addition, when
the TV command will be used to process the entire tape volume (identi-
fied to TV by a DDEF with DDNAME of DDTVIN), the CDVTOUT LLEF must spe-
cify an unlabelled tape in the LABEL operand.

Example:

1. The user wants to write his public VAM data set, MYDS, on a private
tape volume as ABC.

User: ddef ddvtout,ps,ahc,unit=(ta,9),vclume=(private); vt myds

system: (copies MYDS on tape; the name assigned to the data set on
tape is ABC)

2. Now the user wants to write his public VAM data set, WN3, on to the
same private tape volume.

User: vt dsnamel=wn3
System: (copies WN3 on tape with data set name $T.T0003.WN3)

3. The user wants to save his VAN dataset DATA3 on a private tape as
DATA3.

User: vt data3,*DSNAMEL

System: VSN (vsn) FSQ (fsq) data3 saved on tape.

vV (VAM to VAM) Command

This cormand copies a VAM data set in direct-access storage.

T
peration|Operant
L

| [, FRASEDS1= Y|N1{,OVERLAY= Y|N]
| ([, RETAIN= Y|N]
{ [, FROMID=user identi fication]

—
{o
t +
jvv |DsMaMEl1=current data set name { ,DSNAME2=new data set namel
|
|
| | {,TOID=user identification]

L) N

h———.——-L—a

DSNAME1
jdentifies the cataloged VAM data set to be copied.

specified as: a fully qualified data set name.

DSNAME2 .
specifies the name to be assigned to the data set copy; if the copy
is to reside on a private VAM volume, the data set name must be
previously defined by a DDEF command.

specified as: a fully qualified data set name.

system default: the new data set will be named in the form

254

$D.Dnnnn.dsnamrel

where nnnn is a unique number assigned to assure uniqueness of data
set names. The qualifier $D will allow the user to reference all
such data sets created by VV by partially qualified data set nare.

EKASEDS1
specifies that the input data set is to be erased after the data
set has been copied.

FROMID
specifies the user identification rrefixed to the name of the input
data set.

Specified as: For a user, this must be the same as the user iden-
tification associated with the current task.

For the system manager, any user identification currently ijoined to
the system.

For a system administrator, any user identification currently
joined to the system ky him.

System default: the user identification associated with the cur-
rent task is assumed.

Specified as: Y - erase after copy
N - no erase after copy

System default: N - no erasure will be made.

OVERLAY
specifies that the output data set will be overlayed if it already
exists and the data set attributes (DSORG, RECFM, LRECL, KEYLEN,
RKP) for the two copies are the same.

Specified as: Y - overlay to be made
N - overlay not to be made

System default: N - no overlay to be made.

TOID
specifies the user identification to be associated with the output
data set.
*FROMID; the FROMID is to ke used as the TOID.

System default: the current task userid is assumed.

Functional Description: For each successful copy, the user is informed
of the input and output data set names. Any failure to copy successful-
ly results in a diagnostic message and cancellation of the command.

DSNAME1 will be erased (ERASEDS1=Y) only when the data set is copied
successfully.

Generation indexes will be created as necessary for generation data
groups not previously defined in the system.

Examples:
1. The user wants to copy data set XYZ into public storage.

User: vv xyz

Part III: Cormand Descriptions 255

System: (copies XYZ with the name $D.D0003.XYZ)

The user wants to copy data set GH2 onto private VAM volume MYVOL1
and name the data set ABC.

User: ddef dummy,vi,abc,unit=(da,2311), volume={,myvoll)
vv gh2Z,abc

Systen: {copies GH2 onto MYVCIL1l with name AEC)

WT Command

This command writes an existing VSAM or VISAM data set on tape for even-
tual printing on & high-speed printer.

r T
| Operation|Operand }
4 + —
RT	DSNAME=current data set name ,DSNAME2=tape data set name
	[,VOLUME=tape volume number]I,FACTOR=blocking factor]
	[,STARTNO=starting position]I,ENDNO=ending position]
]	,PRTSP={EDIT
	[{,HEADER=H]I[,LINES=lines per pagel(,PAGE=P]
	[, ERASE={Y
8 i b
DSNAME

identifies the cataloged VSAM or VISAM data set to ke written on

tape in print format.

Specified as: a fully qualified data set name.
DSNAME2

VOL WME

specifies the data set name under which the data set is to be cata-
loged while it resides on the output tape.

Specified as: a fully qualified data set name.

System default: a previously labeled scratch tape is used.

Cautjion: DSNAMEZ must refer to a previously lakeled tape data set.

specifies the volume identification number of the output tape.

Specified as: from one to six alphameric characters.

System default: scratch tape is used.

FACTOR

designates the blocking factor for records of the output tape.

Specified as: from one to three decimal digits. The maximumw
blocking factor is 246.

System default: 30.

STARTNO

256

specifies, for each record, the byte position at which writing onto
the tape is to start.

Specified as: from one to six decimal digits.

System default: writing starts with the first byte of each record.

ENDNO
specifies, for each record, the byte position at which writing onto
the tape is to stop. This end byte is written.

Specified as: from one to six decimal digits. The value must be
greater than the value of the STARTNO operand.

Syster default: writing continues to the last byte of each logical
record or until the printer line length (132 characters) is
reached, whichever occurs first.

PRTSP
designates the number of spaces to be skipped between lines.

Specified as:

EDIT - line spacing is controlled by a character in the first byte
position of each data set logical record. The control
character may ke a FORTRAN control character or machine code
(see Appendix D), but must be of the same type throughout
the data set. The control character in each record is supp-
lied by the user.

1 - one space between lines.
2 - two spaces Lketween lines.
3 - three spaces Letween lines.

System default: 1.

Note: When EDIT is specified, the HEADER, LINES, and PAGE operands
must not be specified.

HFEADER :
specifies that the first logical record cf the data set is to ke
repeated on each print page as a header line. The first 132 bytes,
or the entire first record, whichever is smaller, is used as the
header.

Specified as: H

System default: no header is printed.

LINES
designates the number of lines to be printed on a page.

Specified as: from one to four decimal digits (maximum 9999).

System default: 54 lines are printed on each page.

PAGE
specifies that pages are to be numbered.

Specified as: P

System default: no pages are numbered.

BRASE
specifies that the cataloged data set is to be erased from the
catalog after the tape operation is finished.

Part III: Comrand LCescriptions 257

specified as:

Y - erase.
N - save.

Ssyster default: N.

Functional Description: WT results in the creation of an independent
nonconversaticnal task, to which the system assigns a BSN for possible
reference by the user.

The WT command processes input data sets that were created ky using ei-
ther VSAM or VISAM access methods. The tape data set, created by using
the BSAM access method, is written in odd parity with standard TSS
labels.

The selected field in each input data record is written on tape as a
logical record or print line, in proper format for high-speed printing.
Records are blocked, if requested. The maximum blocked record length is
32,767 bytes. Input records containing a read error (or an invalid con-
trol character when the EDIT option is used), are printed on SYSOUT, in
hexadecimal form.

When EDIT is specified, the first Lyte in each logical record is assumed
to be the byte following the control character, which is not printed or
counted when the system determines where to begin printing a record.

If the data set to be printed was created via the CATA command, the
.first byte of each record contains an indicator of the origin of the
record. PRINT translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the key-
board. Unless the STARTNO operand is specified, this byte is printed as
part of the record. If STARTNO is specified as 2, this byte is

bypassed.

Cautions: WT is valid for VSAM and VISAM data sets only. It cannot be
ased for a member of a VPAM data set. However, a VPAM member can be
copied via the CDs command, and then the copy can be written onto tape.

Programming Notes: The user can use the BSN to identify his task when
enter ing the CANCEL command.

The user can also have a data set printed on-line by using the PRINT
command.

Exaggle: The user wants to create a tape, for offline printing, that is
double-spaced and uses the first record as a header. Bytes 20 to 130 of
each record of data set RT.WINDER are to be printed on scratch tape.
Pages are to be numbered and contain 60 lines, and the input data set
isto be erased after it is written on tape. The tape data set, TAPEDS1,
will be system blocked.

User: wt rt.winder,tapedsl,,,20,130,2,h,60,p,erase

The system accepts the task and assigns & BSN.

ZLOGON Command

This command is automatically invoked after the LOGON command is
executed, but before control is passed to the user. Initially, ZIOGCN
performs no function; it allows the user to augment the initialization
process.

258

3 T
| operation|Operand
i 4

SN S)

| T
|ZLOGON |
L 8) 1

Note: There are no operands when invoked by LOGON.

Functional Description: After the task initialization process is com-
pleted, LOGON calls ZLOGON. If the user (or the installation) has de-
fined a procedure with the name ZLCGON, it is executed before control is
passed to the user. Otherwise, ZLOGON is ignored and control is passed
to the user.

Programming Notes: When the user wants some function accomplished auto-
matically when he logs on, he can define a procedure (via PROCDEF or
BUILTIN) with the name ZLOGON, or he can equate (via SYNCNYM) the name
ZLOGON to the name of any other command or procedure. If a program is
to be executed with ZLOGON during the initialization process, it must
reside in USERLIB. The user can also enter ZLOGON, after it has been
defined, at any time during his task.

Examples:

1. The user wants to execute program PGMA every time he initiates a
task. He defines this command procedure:

procdef zlogon
call pgma

Note: Program PGMA must be stored in the user's USERLIB to be
executed. The user can also run program PGMA during his task by
issuing ZLOGON.

2. The user always wants to use the terminal card reader after
initiating his conversational task. He issues:

synonym zlogon=cb
Note: During the LOGON process, the CB command is issued before

the user gets control. CB is ignored during initiation of a non-
conversational task.

Part III: <Command Descriptions 259

APPENDIX A: BULK INPUT FRCM MAGNETIC TAPE

This appendix describes how the user enters bulk input from magnetic
tape.

The way described here is the only direct means of reading a data set
from tape and then converting it to VAM organization, writing it onto
public storage, and cataloging it. The user must send information, in-
dicated below with his tape to the system operator. He must also ensure
that his tape format meets system requirements that are defined later in
this appendix. The data set that will be stored and cataloged has a
different organization from the input data set residing on the tape and
must, therefore, have its own data set name. When the new data set has
been cataloged, the user can refer to it just as he would refer to any
other cataloged data set belonging to him.

INFORMATION NEEDED BY THE SYSTEM OPERATOR

The user must send the following information with his tape to the system
operator for every data set that is to be read and cataloged.

The system operator uses the information to enter an RT command that
causes execution of a system-provided task to handle the tape input.

Tne SYSOUT listing of that task, which is returned to the user, may con-
tain messages.

1. Identification of the user to whom the data set belongs. This i-
dentification is specified as from three to eight alphameric char-
acters. The first character must be alphabetic.

2. vVolume identification of the tape. This jdentification must be
specified as from one to six alphameric characters.

3. Type of tape, for example, 7 (seven-track tape), 7DC (seven-track
tape with data converter feature), or 9 (nine-track tape). If the
user does not specify a type of tape, the tape type specified at .
system generation is assumed.

when the user wants to submit a data set on seven-track tape (with
or without the data converter feature), he must first consider tape
characteristics. If characteristics such as density and parity
match the standards set bty the installation, specify the type of
tape as shown above. However, if characteristics are different,
the user must issue a DDEF command for the data set, specifying the
tape characteristics; issue a CATALOG conmmand to catalog the data
set; and tell the operator that the tape has been cataloged. (See
Item 5.)

4. Name of the input data set, specified as a fully qualified data set
name .

5. CTLG, which indicates that the data set is cataloged.

6. Name under which the data set is to be cataloged, specified as a
fully qualified data set name.

7. LINE, if the user wants lines to be numbered. If this option is
specified, a VISaM data set that has variable-format records is
created. Otherwise, a VSAM data set without line numbering is
created.

260

8. What action is to be taken if an uncorrectable read error occurs.
One of the following options can be specified: ACCEPT (error rec-
ord is accepted), SKIP (error record is skipped), END (read opera-
tion is terminated). If the user does not specify an option, END

is assumed.

The system reads the input data set, converts it to VAM organization,
stores it on public storage, and catalogs it in the user's catalog under
the name specified in the cataloged data set name operand. If the input
tape contains more than one data set, the system reads the specified
input data set only.

The data set that is stored on public storage has either VSAM or VISAM
organization, depending on whether the LINE option was selected. 1If
line numbering was requested, the system generates line numbers in
increments of 100. The maximum number of logical records permitted is
100,000. The input data set record length must not exceed 120 bytes if
line mumbering is requested.

The systen does not perform code conversions. However, if the data set
is on seven-track tape, the system makes any character adjustments re-
quired for data validity.

TAPE FORMAT REQUIREMENTS

The magnetic tape must have the standard TSS label or a standard ASCII
label. (This standard refers to American National Standard for Informa-

tion Interchange ANSI X3.4-1968. The akbreviation ASCII is used

throughout this book.) Physical records must be fixed length and no
longer than 32,767 bytes.

Appendix A: Bulk Input From Magnetic Tape 261

APPENDIX B: BULK INPUT FRCM CARD LECKS

This appendix describes how the user enters bulk input from cards.

The user submits his data sets on punched cards to the system operator,
who enters them into the system via a high-speed card reader. A system-
provided task that handles the card input is executed. A SYSOUT listing
of that task is produced. That listing may contain messages. Two types
of input data sets are permitted: nonconversational SYSIN data sets and
data-card data sets. The two types may be interspersed, one following
another, in any order within a katch of cards. The rules for setting up
these data sets are given kelow.

Note: When the user wants to enter a nonconversational SYSIN data set
together with the data sets it references, he must be certain that the
data sets precede the SYSIN data set.

The acceptable character set for punched cards is descriked in Terminal
User's Guide.

NONCONVERSATIONAL SYSIN DATA SEI

A nonconversational data set contains all comrands needed to run a non-
conversational task. These commands are punched in exactly the format
used tc enter commands from a terminal (see Part I under "Command Format
and Notation"). The first card must be a LOGCN comrand; the last,
LOGOFF. Only the LOGON and LOGOFF commands must begin in column 3. Any
command that is preceded ky a break character (normally the underscore)
must begin with the break character in column 1 if it is to be
recognized.

when the data set is read in, it becomes the SYSIN data set of a noncon-
versational task; it is executed as soon as space is available. after
execution, the SYSIN data set is eliminated. It does not remain in the
catalog or in system storage.

The card-deck format is shown in Figure 3.

The SYSIN data set may include data that is to be read by the user’s
object program during execution. If so, the data to ke read must appear
immediately after the command that starts execution of the user's pro-
gram. (Card data may also start in column 1.) Also, for FORTRAN data,
the end-of-data card, starting in column 1, must follow the last data
card, as in Figure 4.

Data~-Card Data Set

This type of data set contains any information the user wants to put
into public storage as a cataloged data set; it may include commands.
When this type of data set is read, a VAM data set is created and cata-
loged in public storage. This VAM data set continues to reside in
storage until it is specifically erased. Unlike the nonconversat ional
SYSIN data set, it is not executed upon being read.

The format of a data-card data set is shown in Figure 5. The first card
of the data set must be a data descriptor card; the last must be the
LENDDS card. The information that is punched into each card must start
in column 3.

262

/ocoss

/f 2ENDDS
Commands
/dom cards

LOGON yd

Dato
Descripton

Figure 3. Card deck for a
non-conversational task

Figure 5. An example of the
data-card data set

/oeor;

/Pmm MYDS
/% END

data
cards

CALL MYPROG

LOGON

Figure 4. An example of a SYSIN data set, showing input data cards and
the end-of-data card

Data Descriptor Card

The information that is given on the data descriptor card is used by the
system to create a data set. The format of the information on the card
is as follcws:

Appendix B: Bulk Input From Card Decks 263

—
joperands
i

2
| DATASET, user jidentification,dsnamel ,format]l
| [,starting number](,ending number] [, {LINE| FTN|COMP|CARD}]

{ [, error] [,REPLACE]
[N

b v e =t iy e od

DATASET

indicates that data descriptor information follows. This operand
must begin in column 3.

Specified as: DATASET

user identification
identifies the user to the system.
Specified as: the user's identification assigned to him when he
was joined to the system.

dsname
is the name under which the new data set is to be cataloged.
Specified as: a fully qualified data set name.

format

designates the class of cara punching to be used.

Specified as:

EBCDIC -- extended binary coded decimal interchange code.
BCD -- binary coded decimal.

System default: EBCDIC.

starting number

is the first column to ke read when creating the data set records.

specified as: a decimal number from 1 to 80.

system default: column 1.

ending number

LINE

264

is the last column to be read when creating the data set records.

Specified as: decimal number from 1 to 80.

System Default: column 80.

indicates that line numbering is requested. Each record in the

data set is prefixed ty a seven-character line numker of the form
xxxxx00 and by a byte of kinary zeros that is reserved for system
use. The resulting data set is a line data set with variakle for-

mat records.

Specified as: LINE

system default: no line numbering, VSAM.

indicates that a data set with the same characteristics as defined
for LINE, above, Le created. In addition, however, FTN specifies
that the input cards are FORTRAN source and that the user wants

them converted to contain keyboard continuation conventions. The

resultant data set can be updated from 2a terminal without any spe-
cial consideration for multicard statements. Trailing blanks are
stripped from statements that are not continued.

COMP
indicates that a data set with the same characteristics as defined
under LINE be created except that trailing blanks are stripped from
all input records. The data set is compressed at the point as
specified by the END byte. Accordingly, for example, compression
could take place in an assembler source disregarding the sequence
number.

CARD
indicates that a VSAM fixed-length data set be created (no line
mimbering). The record length is the difference between the start-
ing number and the ending numkter + 1. This is the system default.

error
indicates the action to be taken if an uncorrectable read error
OCCurs.

specified as:

ACCEPT -- accept the record in error.

SKIP -- skip the entire logical record if any card in it is in
error.

END —- terminate reading of the data set.

syster default: END

REPLACE
indicates whether an existing data set, with the same name as that
specified on the DATASET card, will be erased when this data set is
cataloged. When REPLACE is specified on the DATASET card and a
data set with the same name exists in the user's catalog, the old
data set is erased, and the new data set is cataloged. If, howev-
er, the existing data set is on private storage, OY if REPIACE is
not specified, a diagnostic is issued, and the CATASET operation is
canceled.

specified as: REPLACE

system default: The old data set is not erased; the CATASET opera-
tion is canceled.

Functional Description: The operator initiates card reading; and the
system reads the input data set, converts it to VAM organization, puts
it in public storage, and catalogs it in the user's catalog under the
data set name provided. The stored data set has either a VSAM or a
VISAM organization, depending on whether the LINE option was selected.
1f line numbering was requested, the system generates line numbers in
increments of 100. The maximum number of lines permitted in such a data
set is 100,000. When line numbering is requested, the new data se€t rec-
ord length must not exceed 120 bytes.

Caution: You cannot create a VPAM data set with the DATASET card.
%ENDDS Card

This card, with XENDDS starting in column 3, rarks the end of a data set
that is to be cataloged. (See Figure 5.)

Appendix B: PBulk Input From card Decks 265

APPENDIX C: PROTOTYPE PROFILE

The prototype profile, which is initially used to formr the user profile
for each user, contains command system defaults, input and output trans-
lation characters, and a table of miscellaneous control characters.

This appendix covers the following topics:

e The table of system defaults

s The basics of translation, including the tramslation takles and the
corresponding function codes for input translation and for output

translation

s The character switch takle

TABLE OF SYSTEM DEFAULTS

Table 19 contains default values for comnmand coperands and implicit
operands. (Implicit operands are not specified with a command, but they
may affect the operation of a command or of the system.) This table
shows the initial values for these defaults. Each value can be changed
with the DEFAULT command.

Table 19. Command system defaults

Table 19. Command system defaults (part 1 of 4)

r LS T

|Operand | Default |

| Name | value | Purpose or Command that Uses
b 1 1

|ACC | | CATALOG

|ACCESS | | PERMIT

|ACTION |O | CATALOG

ALIAS | |POD?

| ALPHABET | 1 |c,CA,CB,K,KA KB
| ASMLIST |Y | AsM

L l 4

8 T
| BASE | 100

+
|EDIT, REGION

| BCD IN | FIN

| BREVITY |T |Message length filter

| BSN | | CANCEL

F : +

} CHAR |IC | CORRECT, LIST

|{CLEANUP |Y | EXIT

|cLp | |MCAST

| CONF P . | MODIFY

| CONPRMPT | Y |UPDATE, text editor data input routine
JCONREC |N | UPDATE, text editor data input routine
| CONT | |MCAST ’

| COPYBASE | |cps

| COPY INCR| |cps

| CORMARK |*$a%# | CORRECT

|cp | |MCAST

|CRLIST |N |ASM, FTN

jcsw N | PROFILE

L L L

h—-—l—-——.——-—i—-——‘—-—-L—-———-h——————.d-—_d

266

Table 19. cCommand system defaults (part 2 of 4)

v

{Bperand | Default | }
| Name | value | Purpose or Comrand that Uses i
- + H - 4
| DATA | | POD?]
|DBASE | |DATA |
} DCB | | DDEF, FILEDEF {
| DDNAME | | CLOSE, DDEF, FILEDEF , JOBLIBS, RELEASE |
| DEPROMPT | Y | DELETE, ERASE |
| DEVICE | | EVV i
| DIAGREG |N | ABEND]
|[DINCR | | DATA |
| DISP i |DDEF, FILEDEF |
JDSNEME | | BACK, CATALOG, CDD, CLOSE, DATA, DDEF, DELETE, |
| | | EDIT, ERASE, EXCERPT, EXECUTE, FILEDEF, LINE, |
| | { PERMIT, PRINT , PUNCH, RELEASE, RET, SHARE, WT {
| DSNAMEL | |cps, TV, VI, WV I
{ DSNAME2 | jcbs, TV, VI, VvV, WT |
|DSORG | | DDEF, FILEDEF I
3 t - i
| ENDNO | |PRINT, PUNCH, WT I
| EOB | |MCAST |
| ERASE |N |CATALCG, CDS, PRINT, PUNCH, WT)
| ERROROPT | END JPRINT, PUNCH, WT |
| EXPLICIT| |PLI |
| EXINAME | |BUILTIN i
b + + 4
| FACTOR | |WT i
| FORM | | PRINT, PUNCH I
| FROMDEV | | DMPRST]
| FRVOLID | |DMPRST]
| FTN | | MODIFY |
L 4] |
v T T 1
| GDG | |CATALOG |
|GNO | | CATALOG |
F 1 + 4
| HEADER | |PRINT, WT |
| HEXSW | x% | CONTEXT, DATALINE service routine, UPDATE {
b + } :
| INCR j100 | EDIT, INSERT, NUMBER, REGION, REVISE]
| INSERTn | | PRMPT 1
J INSTLOC | | BRANCH |
| INTRAN | {MCASTAB I
| IsD | Y |ASM, FTN, LNK |
| ISDLIST |N | AsM |
i 4 1 J
) T T 1
{JOBLIB | | DDNAME ? i
b t } 1
| KC | | MCAST |
| KEYLEN | |DDEF, FILEDEF MODIFY }
', + } 4
{LABEL | | DDEF, DMPRST, FILEDEF]
| LGH | |LL |
|LIB] JLNK]
| LIMEN W |Message severity filter |
|LINCR | (100,100) |[ASM, FTN, LNK |
|LINE 1} JLINE?, RT |
| LINENO Y | DATA, MODIFY, text editor data input routine I
| LINES | 54 |PRINT, WT |
|LISTDS |Y |AsM, FIN, LNK |
| Loc [|RUN |
| LPCXPRSS| |ASM, FTN, LNK |
{ LRECL 1 | DDEF, FILEDEF MODIFY i
i 4 Jd

Appendix C: Prototype Profile 267

Table 19. Command system defaults (part 3 of 4)

T v
|operand | Default | 1
| Name | Vvalue | Purpose or Command that Uses |
- $ + 1
|{MACRO | | FILEDEF |
|MACRODS | |PLI {
| MACROLIB| |ASM {
{MAP 1 {PLI i
| MERGEDS | {PLI |
[MERGELST | {PLI
JMINS i |TIME
| MMAP IN | FIN
|MNAME | | QUALIFY
|MODREP | |AsSM, FIN, LNK
| MODULE | | POD?
|MSGID | | PRMPT |
b + + 1
N1 | | CONTEXT, CORRECT, EXCERPT, EXCISE, INSERT, LIST,
i | } LOCATE, NUMBER, REVISE
j N2 | | CONTEXT, CORRECT, EXCERPT, EXCISE, 1IST, LOCATE,
i | | NUMBER, REVISE
| NAME | jasM, BUILTIN, CALL, COBOL, FTN, FTNH, HASM, LNK,
| | } LoaD, PLI, PLIOPT, PROCDEF, UNLCAD i
| NAMES | |pss?, PC? |
| NBASE | | NUMBER i
|NEWNAME | JCATALOG]
| NEWPASWD| | CHGPASS i
| NEWVLID | |DMPRST |
|NUMLINES|1 | SPACE |
[1 3 8 A
L] L) LE L]
|OBLIST |N |FTN]
| DCERASE | jopc {
jODCPLI | jopc i
|OPTION | | DDEF, FILEDEF {
OPTIONL | | EXHIBIT i
OSDDN | |FILEDEF, FILEREL 1
OSKEYLE | | FILEDEF |
OSOPTS | JCOBOL, FTNH, HASM, PLIOPT }
JOUTRAN | |MCASTAB |
| OWNERDS |*ALL | SHARE i
b + + 4
PADCHAR | |PLI 1
PAGE | | PRINT, WT i
PLCOPT | {PLI I
|PLIOPT | jPLI]
| PLIPACK | {PLI |
| PMDLIST |N |AsM, FIN, LNK 1
| PODNAME |USERLIB |POD? i
| PREXPAND | jcontrols procedure expansion error analysis |
| PROCNAME | | KEYWORD i
|PROLIB | {BUILTIN, PROCDEF i
| PROTECT | | DDEF 1
|PRTSP |1 }PRINT, WT |
|PUBLIC |N | FTN i
L 4 i 8 -
1] 1] T 1
| READ IN |BLIP | |
|RCC | |MCAST |
| RECFM | |DDEF, FILEDEF MODIFY |
|REGSIZE |O | EDIT |
|REJMSG | |PLI i
| REPLACE | {CcDS {
|RESET |N]LL]
| RET | | DDEF, FILEDEF RET {
|RKP | | DDEF, FPILEDEF MODIFY i
| RNAME | | EDIT,EXCERPT,REGION . i
|Rs | | MCAST |
|RSVP l {Controls responses in GATE i
|RTYPE | | DATA |
| RUNMODE | | DMPRST i
L L i J

268

Table 19. Command system defaults (part 4 of &)

h-—JL_.ﬂ-—-—-db——-—__-li-———-—-——_.dh——-————-———_—.—-——_——————d-——d

T T
{Operand | Default |
| Name | Value | Purpose or Command that Uses
k- + }
}jsCoL |0 | CORRECT
| SETNAME | | MODIFY
|SHARED | | ERASE
| SIRTEST | JEXIT, PUSH
|SLIST |Y | FTN
| SOURCEDS| |]COBOL, FTNH, HASM, PLI, PLIOPT
|SPACE | | DDEF, FILEDEF
| SSM | |MCAST
] STACK |1 | PUNCH
|STARTNO | | PRINT, PUNCH, WT
| STATE | N | CATALOG, PERMI1T
| STEDIT |N |AsSM, FIN
|STORED (N |ASM, FTN, LNK
| STRING | | LOCATE
| STRING1 | | CONTEXT
|STRING2 | | CONTEXT
| SYMLIST |N jASM
| SYSIN K |Controls GATE®s access to SYSIN data set
| SYSINX |G |Controls conmmand analyzer's access to GATE
v E— +
| TIME | | BLIP
| TODEV | |DMPRST
|TOVOLID | | DMPRST
| TRANTAB |N |Text editor
|TRP | |MCAST
| TRUNCATE | N |LL
|TYPE | | CLOSE, EXHIBIT
e S 1
JUNIT | | DDEF, FILEDEF
| UPDTXFER | |PLI
} USERID | | PERMIT, SHARE
jUSM | |MCAST
— 4 1
) T T
| VERID 1 |ASM, FTN, LKK
|VOLUME | | DDEF, EVV, FILEDEF, WT
b -+ }
|WRITCHK | | DMPRST
i 4 i
1 4 B T
| XFERDS | |PLI
Lo L 41

BASICS OF TRANSLATION

Each character translation table (see Table 20 and Table 21) is made up
of two parts: the first part has 256 translation entries, and the
second part has 256 corresponding entries that are the function codes
assigned to the translation entries.

The translation entries begin at byte 0 (X'00') and continue through
byte 255 (X'FF'). The function codes begin at byte 256 (X'100) and con-
tinue through byte 511 (X'1FF*}. There are two sets of function codes,
one for input and one for output.

The meanings of the input function codes that are shown in Table 20 are
as follows:

Code 00 - Translate only

when this code is specified for a character, the system picks up
the internal code of that character.

Appendix C: Prototype Profile 269

Code

Ccode

code

code

Code

code

04 - Character kill

every time it encounters a character with this function code, the
system deletes that character and the one preceding it. The
system-supplied value is backspace.

08 - End-of-block or new line

when the system encounters a character with this code, it reco-
gnizes it as the end of an input stream and appends at that point
an EOB character from the table of miscellaneous control charac-
ters. Any characters beyond the EOB character are ignored.

0C - Cancel

if the last character in the line has this code, the system deletes
the character and the entire line that precedes it. The system-
supplied value is #.

10 - Terminal mall

if this code is assigned toc the last character before the end-of-
block, the system ignores the character. The system-supplied value
is a new line.

14 - Null
any character to which this code is assigned is ignored as input to

the system.

18 - Escape

any character to which this code is assigned Lecomes a One-
character escape. The character immediately following is always
treated as data. i

The meanings of the output function codes that are shown in Table 21 are
as follows:

Code

Code

code

Code

code

code

code

270

00 -- Translate only
all characters assigned this function code are translated using the
corresponding values in the first half of the cutput translation

table.

Q04 -- Restore
when a bypass code is in effect for output data, the restore code
restores printing of the output data to a 1050 Data Communicaticns

System.

08 -- Byrpass
any output data, preceded by a bypass code, is not printed at a
1050 terminal. A restore code restores output printing.

0C -- Prefix

a character with this function code causes the printer ribbon to be
shifted. This function requires special features on the 1052
Printer-Keyboard and the 2741 Communications Terminal.

i4 -- Tab

this code causes a tab to be generated at the terminal. The output
continues at the next tab position. (Line length control is termi-
nated when a tab character is recognized.)

18 -- New Line
this code generates a carriage return and a line feed. The func-
tion is not recognized on the teletype terminal.

1C -- Backspace

this code generates a backspace. On the teletype terminal there is
no physical backspace; a left arrow is printed to indicate that a
backspace has occurred.

Code 20 ~- Delete Character

a character assigned this code is deleted from the output stream;
initially, 211 unprintakle characters have this code.

code 28 -- Line Break Character

when a line of output data is too long for the terminal, this
character is used to indicate where the line may be broken.

Code 30 -- Line Feed

this ocode causes the terminal paper to be roved up one space.

The procedure of translation is as follows:

1.

A character is entered into the system, either from a terminal or
from an output data set. For example, a user enters a capital
letter A from the terminal.

The system uses the hexadecimal position of A, which is C1, as an
index into the translation takle. (The translation entries and the
corresponding functional codes for input are shown in Table 20.
These are the values that are provided intially by the syster. The
values can be changed.)

There is a code in the location in the table that corresponds to
the character (really, it corresponds to the FRCDIC representation
of the character). The value in Table 20 for the letter A is
X'c1°.

The system looks at the corresponding function code position to see
if there is an entry. For example, the system looks at decimal
location 449 (see the column labeled "Function Code"™; the hexadeci-
mal byte is X'1Cl1' which is found by adding X"C1® to X°'FF') for the
function code for Aa.

If a function code is found, the function is performed. 1If no
function code is found, the character is translated only. For ex-
ample, the function code for A is 00 for input, as shown in Table
20 (translate only), and 00 for output, as shown in Table 21
(translate only).

The user can change his translation tables. This procedure is explained
in the descriptions of the MCASTAB and SET commands in Part III.

Table 20. Prototype input character translation table (part 1 of 6)

1 3 Bl A}
| Translation Entry i Function Code |
}_ T h) AIL' LB A{
| Byte |[Code (Hexa-| | . | Input Code i
| (Decimal) | decimal) | Character | Byte (Decimal) | (Hexadeciwal) |
3 + + } $ 1
| 0 | 0] | 256 | 00 |
| 1 | 1 | | 257 | 00 i
| 2 | 2] | 258 | 00 |
| 3 | 3 | | 259 | 00 |
{ 4] 4 { PF | 260] 00]
i 5 | S | HT | 261 | 00 |
| [| 6] LC 1 262 1 00]
i 7 | 7 | DEL | 263 | 00 |
| 8 | 8 | i 264 | 00 |
{ 9 I 9 | | 265 | 00 |
10	A I	266 1 00		
11	B	l 267	00	
12	c		268	00
L L 1 4 L J

Appendix C: Prototype Profile 271

Table 20. Prototype input character translation table (part 2 of 6)

— T !
| Translation Entry | Function Code |
t Y T } = T i
| Byte |Code {(Hexa-| | Input Code |
| (Decimal)| decimal) | Character | Byte (Decimal) | (Hexadecimal) |
b — + + + 1
| 13 | D] | 269 | 00 |
| 14 i E | | 270] 00 i
| 15 | F i | 271 | 00]
16	10] 272	00
17) 11		273	00
18	12		274] 0o
) 19	13		275
20	14	RES	276
21	15 { NL { 277	10]	
22	16 i BS] 278	04	
23	17	IL	273
24	18		280
25	19		281
26	1A		282 i 00
27] iB		283	00 1
28	ic		284] 00]
29	iD		285
30	1E		286] 00]
31 i iF]	287	00 {	
32	20	DS	288] co]
33	21	S0Ss	289 i 00
34	22	FS	290
35	23 }	291	6o l
i 36	24	BYP	292] 00]
37	25	LF	293 i 00
38	26	ECB] 294] 08]	
39	27] PRE	295	00
40	28] 296	00
41	29]	297	00
42	2Aa] SM	298	00
43 { 2B	i 299	00	
4y	2C]	300	00 i
i 45	2D		301
46	2E		3G2] 00
47] 2F		303	00
l 48	30]] 304] 00		
i 49	31		305
) 50	32 i	306] 00	
51	33 I	307	00 [
52	34 } PN	308] 00	
53	35	RS	309
] 54	36] uc] 310] 00		
} 55	37	EOT	311
56	38		312
57	39		313
58	3a		314
59	3B		315
60	3c	i 316] 00 i	
61	3D		317
62	3E		318
63	3F		319
i 64	40	SP	320] 0o
65	41		321
66	42		322 i 00
67	43		323
{ 68	4y		324
69	4s]] 325 { 00		
— 4 i 1 L]

N
~
[M)

Table 20.

Prototype input character translation table (part 3 of 6)

Translation Entry

Function Code

T

r ¥ 1
| | |
t v t v |
i Byte |Code (Hexa-] | | Input Code |
| (Decimal) | decimal) | Character | Byte (Decimal) | (Hexadecimal) |
b ¢ + } + 4
| 70 | 46] 1 326 | 00 |
] 71| 47 | | 327 | 00 |
i 72 | 48 | { 328 1 00]
| 73 | 49 | | 329 l 00 |
i 7% | 4a] | 330 | 00 |
i 75 | 4B I . i 331 | 00 |
| 76 | 4c | < | 332 | 00 |
] 77 | 4D 1 (| 333] 00 I
| 78 | YUE l + | 334 | 00 |
| 79 | uF I | | 335 1 00 |
| 80 | 50 | 13 | 336 | 00 1
| 81 | 51] | 337 | 00]
| 82 | 52 | | 338 | 00 |
] 83 | 53 i] 339] 00]
i 84 | 54]] 340] 00]
] 85 | 55 i | 341 I 00 |
| 86 | 56 | | 342 | 00 |
| 87 | 57 | | 343 | 00 |
} 88 | 58 | } 344 | 00 |
| 89 | 59 | | 345 | 00 |
{ 90 | Sa | L i 346 | 00 |
{ 91 | SB | S I 347 i 00 |
| 92 I 5C | * | 348 | 00 |
i 93 | 5D |) I 349 l 00 |
9y	S5E	:	350] 00	
95	5F	~	351	00
96	60	-	352] 00	
I 97	61	/ A 353 I 00 1		
] 98	62		354] 00	
] 99	63		355	00]
100	64 i i 356] 00			
101	65] 357	00]	
102	66 i	358] 00		
103	67 1 i 359	00		
104	68 I] 360	00 l		
105	69		361	00
106	6A		362	00
107	68	.	363	00
108	6C] %] 364] 00			
i 109	6D	_	365] 00	
110] 6E	>	366	00	
111	6F I ?	367	00	
112	70		368 l 00	
113	71		369	00
114 72		370	00	
115	73 1	371	00	
116	74 [372	00	
117	75		373) 00	
118	76 l	374 I 00		
119	77 1 i 375 I 00 1			
120	78		376	00
{121	79		377	00
{ 122	7A	:	378	00
123	7B	#	379 1 oc	
128	7c I a	380	00	
125	70	. i 381	00]	
126	7E] =	382] 00		
L. A L ; R i R J

Appendix C:

Prototype Profile 273

Table 20
. Protot
ype input
P character translation
table (
part 4 of
6)

9

Translation Entry
Function Code

v

|
f Bl
Byte |

|(Deczm:l)'C°de (Hexa-T 1
!] decimal) |) “
' i] ! Character | B |
| 128 | 7F | . + yee Denl esiecia |
| 5] : l l !, (Bexadecixaf I
| 130 l 81 | | 2o T N
| 131 | 82 | e | 385 | : |
| 132 | 83 | 2 I 306 | o |
| 133 I 84 | p] 387 | 0 '
134 ! 85	J I 308	00		
135	86	p	389	3
136	87	£ ! 390 i o		
137 ‘ 88 I p ‘ o	: l			
138	89	h ‘ 393 I o		
139 ' 8a	* I 393	0 ‘		
140	8B	' 5	: I	
141	8C I l :	:		
142 ‘ 8D		55¢	: l	
143 ' 8E [I o	: '			
164 I 8F		s	: l	
”5	:	' on	00	
146 ’ 91	.	400 l o		
147 I 92	” ' 01	:		
i	¥	2	401	00
‘ g	55	g I 402	00	
i	.	i	403	00 I
5	5	m	40y	00
5	o6	n	405	00
l :	i I : l e	00		
i	:	:	e	00
	55	a	408 I 00	
i	X		208	00 l
&	i l	"o	00	
g	:		a1y	00 I
l ;	g	' e	00	
g	: l	e	00	
& ‘ : l	i	00		
i	o ‘	415 l 00 i		
163 I a3 I) : l			
i	i ' . ‘ 417	00 l		
l -	s	3	418	00 !
' i	R	¢ ‘ 419	00	
167	A6] . l 21	: '		
i	i ' v	421	00 ‘	
l 5	X7	" : 422	00 -	
i ‘ ¥	y	J22	00 i	
i	s	Y I 424 ! 00 !		
i I 2 I	P	00		
! :	7		b2 I 00	
i	:		y28	00]
.	i l l e I 00			
i	; I	iss	00	
l :	i I	2o	00	
i	= l	ety ! 00		
l : ‘ B2 l	it] 00			
g I :		et	00	
. ' =		et { 00		
g	:		e	00
‘ .	: ‘	u3s	00 i	
{ :		436	00	
L | 438 ! o0 |
oo e
] 00 |l
4

274

Table 20.

Prototype input character translation table (part 5 of 6)

Iranslation Entry

Function Code

—— - — v

B

v hJ
| |
™ T . 4
Byte |Code (Hexa-|] | Input Code |
(Decimal)| decimal) | Character | Byte (Decimal) | (Hexadecimal) |
j I— <1 1 L N 1 4
r — ¥ T H 1
{ 184 i BS | | 440 i 00 |
| 185 | B9 | | 441 | 00 |
I 186 | BA | i 442 | 00 {
| 187 | BB | 1 443 | 00 i
{ 188 | BC | | 44y | 00 |
| 189 I BD | | 445 | 00]
| 190 | BE | i u46 | 00 |
| 191 l BF | | 447 | 00 |
{192 | co | | 448 | 00 |
| 193 | c1 | A | 449 | 00 |
| 194 | c2 | B] 450 | 00 |
i 195 | c3 | c | 451 { 00]
| 196 | ol | D | 452 | 00 |
| 197 | cS | E 1 453 l 00 |
{ 198 | cé | F] 454 00 |
i 199 | c7 | G 1 455 00]
200	ce	H	456 00
201	c9	I] 457 00	
202	CA		458 00
i 203	CB		459 00]
204	cc		460
205	cD	! 461 00	
i 206	CE	l 462 00 1	
207	CF i	463	00]
208	DO] 46l	00
209	D1	J	465
210	D2	K N 466	00
211	D3	L	467
212	D4	M	468 \ 00
213	DS	N	469
214	D6 i o]	470	00
215	D7	P	471
216	D8	Q	472 i 00
217	D9	R	473
218	DA l	474	00 I
219	DB] 475	00
220	DC		476
221	DD		477 l 00
222	DE		478
i 223	DF		479 1 00
224 l EO		480 i 00	
225	El] 481	00
I 226	E2	s i 482	00
227	E3	T	483
228	EU4	U	484 00
229	ES	v	485 00 -
230 \ E6	W	486	00
231 E7	X	ug7 00 1	
232 E8	Y	488 00	
i 233 E9	z	489	00
234 EA		490 00	
235 EB	1 491 00		
236 EC] { 492 00 i			
237 ED		493 00 i	
238 EE) l 494y 00			
239 l EF		495 00	
240	FO	0	496 00
L L) R b]

Appendix C: Prototype Profile 275

Table 20. Prototype input character translation table (part 6 of 6)

o M 1
{ Translation Entry | Function Code |
I T Y t+ T -1
{ Byte |Code (Hexa-| |] Input Code l
| (Decimal) | decimal) | Character | Byte (Decimal) | (Hexadecimal) |
b $ s 4 + =
i 241 | F1 i 1 | 497 | 00 |
| 202 | F2 | 2] 498 I 00 1
| 243 | F3 I 3] 499 I 00 |
| 264 | FY4 1 4 1 500 1 00 |
| 245 | F5 | 5] 501 | 00 l
1 246 | F6 | 6 | 502 | 00 |
| 247 | F7 [7 I 503 | 00]
| 248 | F8 | 8 | 504 | 00 1
| 2u9 | F9 | S | 505 | 00 I
| 250 | FA 1] 506 1 00 |
| 251 | FB | | 507 | 00 !
i 252 | FC |] 508 | 00 |
| 253 | FD | I 509 | 00 |
| 254 | FE] | 510 | 00 l
| 255 | FF | I 511 | 00 |
L L i | § | & 3

Table 21. Prototype ocutput character translation table (part 1 of 5)

L -1 Al
i Translation Entry | Function Code |
b T v t T -
| Byte |Code (Hexa-|]] | Input Code |
| (Decimal) | decimal) | Character | Byte (Decimal) | (Hexadecimal) |
F + t { + 4
0	0] 256	20	
1	1		257	20
2	2]	258 i 20		
3	3		259	20 {
} 4	4] PF	260	20	
{ 5 { 5 1 HT	261	14 i		
i 6	6] LC	262	00	
i 7	7 { DEL	263	20 i	
8	8		264 l 20	
9	9		265	20]
10	A]	266	20	
11	B	I 267	20	
] 12	c		268	20
l 13	D I	269	20 I	
i 14	E] 270	20	
} 15	F		271	20
] 16	10 I] 272] 20			
i 17	11		273	20
18	12		274 1 20]	
1 19	13		275	20
20	14	RES] 276] o4		
21	15 l NL	2717	18 [
] 22	16	BS	278] ic	
23	17] IL] 279	00 [
i 24	18	i 280 i 20 I		
] 25	19] 281	20	
i 26	ia]] 282	20		
} 27	iB		283	20
i 28	1c i] 284] 20			
29	1D		285 i 20	
30	1E		286	20 i
L L A 1 | J

276

Table 21. Prototype output character translation table (part 2 of 5)

-
r Translation Entry i Function Code i
- T -r 1 T {
| Byte |Code (Hexa-] | Input Code |
| (Decimal)| decimal) | Character | Byte (Decimal) | (Hexadecimal) |
= t H 1 t —q
| 31 | iF | | 287 | 20 i
] 32 | 20 I DS I 288 | 20)
] 33 | 21 | sos | 289] 20 I
| s | 22] FS | 290 | 20 |
i 35 | 23] i 291 | 20 |
| 36 | 24 | BYP | 292] 08 |
| 37 | 25 | LF | 293] 30]
| 38 | 26 | ECB | 294 | 20 |
i 39 | 27 | PRE | 295] oc |
| 40 | 28]] 296 | 20 }
| 41 | 29 l | 297] 20 i
i 42 | 2 | SM | 298 | 20 |
| 43 i 2B | | 299] 20 |
| 4y | 2c | | 300 i 20 |
i 4s | 2D i | 301 | 20 l
| 46 | 2E | | 302] 20 |
i 47 | 2F] | 303 | 20 |
| 48 | 30 | I 304 | 20]
i 49 | 31 | | 305 | 20 |
] 50 | 32 i] 306 | 20]
| 51 | 33] | 307] 20]
i 52 | 34] PN] 308 | 20 |

. 53 | 35 | RS | 309] 20 I
| 54 | 36 | uc | 310 | 00 |
i 55 | 37] EOT | 311 | 20 |
| 56 | 38 | | 312 | 20 |
l 57 | 39 l | 313] 20 i
| 58 | 3a | | 314 | 20]
i 59 | 3B ! | 315 | 20 |
] 60 | 3c | | 316 | 20]
i 61 | 3D | | 317 | 20 |
| 62 i 3E | | 318 | 20 |
| 63 | 3F | 1 319] 20 |
l 64 | 40 | sP | 320 | 28 |
65	41		321] 20	
66	42		322	20
67	43] 323] 20		
l 68	4y		324 l 20	
69	45	i 325	20	
i 70	46		326 i 20]	
71	47 i	327	20]	
72	ug]] 328] 20]			
73	49		329	20
74	up] 330) 00		
75	4B I .	331	00	
i 76	uc	<	332	00
77	4D	(333] 00	
78	4E	+	334	00
i 79	4F] 335] 00	
I 80	50	3	336 i 00	
81	51 l \ 337	20 l		
] 82	52		338 i 20 {	
i 83	53	l 339	20	
84	sS4	i 340	20	
85	55		341	20
i 86 | 56 l | 342 | 20 |
] 87 | 57 | | 343 1 20 |
' IS L B X 1 4

Appendix C: Prototype Profile 277

Table 21. Prototype output character translation table (part 3 of 5)

r- T 1
] Translation Entry 1 Function Ccode I
% v T 11' T ‘1'
| Byte |Code (Hexa-| | i Input Code |
| (Decimal)| decimal) | Character | Byte (Decimal) | (Hexadecimal) |
- } } + H 1
| 88 | 58 | | 344 i 20 i
| 89 l 59 | | 345 | 20 |
| 90 { 5a | ! | 346 | 00 i
| 91 | SB | $ | 347] 00 |
| 92 | 5C | * | 348 | 00 i
| 93 | 5D |) | 349 | 00 |
| 9y | 5E | ; | 350 | 00 |
| 95 i S5F] - | 351 | 00 |
H 96 | 60 | - | 352] 00 |
| 97 | 61 | / | 353 | 0o |
] 98 | 62 | | 354 { 20 |
| 99] 63 i | 355 | 20]
{ 100 | 64 | | 356 i 20 |
| 101 | 65 |] 357 | 20 |
| 102 | 66 | i 358 | 20 |
| 103 | 67 I | 359 { 20]
| 104 | 68] | 360 | 20 |
| 105 | 69] | 361 | 20]
[106 | 6A] | 362 | 20 |
| 107 | 6B i . | 363] 00 |
{ 108 | 6C] %] 364 | 00 |
| 109 1 6D | _ | 365 { 00 |
] 110 | 6E | > | 366] 00 |
] 111 | 6F | ?] 367] 00]
| 112 | 70 | I 368 | 00 |
| 113 | 71 | | 369] 20 |
| 114 | 72] | 370 | 20 |
| 115 | 73 | | 371] 20 |
| 116 | 74 | | 372 i 20 |
] 117] 75 | i 373 | 20 |
| 118 | 76 | | 374 i 20 | |
| 119 | 77] | 375 | 20 |
| 120 | 78 | | 376 | 20 |
| 121 | 79 | | 377 | 20 |
i 122 | 7a | : | 378 | 00 |
| 123 | 7B | # | 379 | 00 |
| 124 | 7C | ? | 380 | 00 {
| 125] 7D | ' | 381 | 00 |
) 126 | 7E | = | 382 | 00 |
| 127 | 7F i " | 383] 00 |
| 128 | 80 | | 384 | 20 |
} 129 | 81] a | 385 | 00 |
] 130 | 82] b | 386 | 00 \
| 131 | 83 | c | 387 | 00 i
| 132 | 84 | d | 388 | 00 {
| 133 i 85 | e | 389 | 00 |
| 134] 86 | £ | 390 { 00 {
| 135 | 87 | g | 391 I 00 (
1 136 | 88 | h | 392 | 00 |
| 137 | 89 | i | 393 | 00 {
| 138 i 8A l] 394 | 20 i
| 139] 8B | | 395 | 20 {
| 140] 8C |] 396 | 20 |
} 141 | 8D] | 397 | 20 |
| 142 | 8E | | 398 i 20 {
| 143 | 8F |] 399 | 20 |
| 144] 90 i] 400 l 20 {
L 'y L i L d

278

Table 21. Prototype output character translation table (part 4 of 5)

v |
{ Translation Entry | Function Code |
’- T T + T ‘{
| Byte |Code (Hexa-| | Input Code |
| (Decimal) | decimal) | Character | Byte (Decimal) | (Hexadecimral) |
b ¥ t t t {
| 145 i 91 } 3j | 401 | 00 |
i 146 } 92 | k | 402 | 00 1
| 147 | 93 | 1 | 403 | 00 l
| 148 | 94 | m | 40y | 00 |
| 149 | 95 | n | 405 | 00 i
| 150 i 96 | o | 406 | 00]
| 151 | 97 | P | 407 1 00 |
| 152 | 98 | q | 408 [00 {
153	99	r	409	00
154 i 9A		4190] 20		
155	9B] 411] 20		
156 } 9cC	{ 412	20		
157	9D) 413	20	
158 { 9E		414 i 20		
159	9F		415	20
160	AO]	416	20	
161	a1		417	20
162	A2	s	418	00
163 i A3	t	419	00]	
164 i Al	u I 420	00		
165 H AS	v] 421	00]		
166	A6	W	422	00 i
i 167	A7	x] 423	00	
168	A8	Y	424	00
169	A9] z	425] 00		
170	AA		426	20
171	AB		427	20 l
172	AC		428	20
] 173 { AD l	429	20		
i 174 i AE	i 430	20		
175 } AF	1 431] 20			
176 i BO 1 { 432 i 20				
[177	Bl		433	20]
i 178	B2] { 434	20		
179	B3]	43s	20 {	
180	B4		436	20
181	B5		437	20
182 i B6]	43g	20		
183 i B7] 439] 20 i			
184	B8]	440	20	
] 185 i B9		441 I 20 i		
186	BA] uy2	20	
187 l BB]	443	20		
{ 188	BC] uyy i 20		
189	BD		445] 20	
190	BE		446 i 20	
191	BF] 4u7 i 20 1		
192 co]	448 20 {			
193 c1 1 a } 449 00				
} 194 c2	B	450 00		
195 c3	C] 451 (+14]			
196 { cy	D	452 00		
197 [Cc5] E] 453) 00				
198 Cé	F	454 00 {		
199 c7	G } 455 00]			
200	c8	H	456 I 00 !	
201 1 c9	I l 457 i 00 }			
L J B L A } J

Appendix C:

Prototype Profile 279

Table 21. Prototype output character translation table (part 5 of 5)

B ot s s . S S o o st S s P iy S G WD s, S e P s, Ve s, ST s, D et OOt s T s, T i, > s, S s S s o i S s, ST i e s S) D e, T . ot et . bt o

| et T T T T T e e e e
| franslation Entry ! Functicn Code
b R S Rt T —
| Byte |Code (Hexa-|] Input Code
| (Decimal) | decimal) | Character | Byte {(Decirmal) | (Hexadecimal)
o fomm =y e

| 202 i Ch |] 459 i 20
| 203 i CB |] 459 1 20
| 208 | ce |] 460 | 20
| 205 { CD |] Le1l | 20
| 206 | CE | | 462 | 20
| 207] CF]] 463 | 20
| 208 i DO | | 464 | 20
| 209 | D1 | J i 465 | 00
| 210 i D2 i K] beo | 00
| 211 | D3 | L i ue7 | 00
| 212 | Db { M] 468] 00
| 213 ! D5] N | 469 i 00
| 214 : Dé i o] i 470 { 00
| 215 ! D7 ! p i 471 | 00
| 216 i D8 i Q i 472] 00
| 217 | D¢] R { 473 | 00
| 218 | DA ! | 474 | 20
i 219 | DB ! i 475 | 20
! 220 ! DC i] 476 | 20
| 221 i Dh i | 477 i 20
| 222 } DE { i 478 | 20
] 223 f D¥ |] 473 i 20
| 224 i EO] | 480 i 20
] 225 i El { | 481] 20
| 226 i E2] s { 482 i 00
| 227 | £3 i T] 483 | 00
| 228 i E4] U { 48y [00
] 229 ! ES i v | 485 | 00
| 230 i E& | W } 886 i 00
| 231 j E7] X | 487 | 00
| 232 H E8 ! Y | ugs i 00
i 233] E%] A [489 i 00
| 230} EA ! i 490 ! 20
| 235 EB] I 491 | 20
| 236 i EC]] 492 i 20
] 237] o) i | 493] 20
| 238 | EE i i 49y | 20
| 239 | EF i] 495 | 20
[240] FO i 0 | 496 i 00
| 241] F1 i 1 i 497 | 00
| 242 j ¥2 i 2 i 498 i 00
i 243 | F3 | 3] 499 | 00
| 244 | Fy | i i 500 i 00
| 245 | F5 | S i 501 { 00
| 246 i Fé] 6 | 502 ! 00
i 247 i w7 | 7] 503 { 00
| 248 i F3 i 8 i 504] 00
| 249 i F9] 9] 505 i 00
! 250] FA ! § 506 | 20
| 251] FB] i 507 | 20
i 252 / FC { | 508 { 20
| 253 i FD] ! 509 ! 20
| 254] FE i i 510 i 20
] 255 | FF 1] 511 1 20
L & A ——d — i ——

280

Some characters that appear in Tables 20 and 21 have special functions.
The definitions of these functions are presented below.

1. cContrcl characters (in order of appearance)

PF Punch Off DS Digit Select PRE Prefix

BT Horizontal Tab SOS Start of SM Set Mode

IC Lowercase Significance PN Punch On

DEL Delete FS Field separator RS Reader Stop

RES Restore BYP Bypass UC Ugppercase

NL New Line LF Line Feed EOT End of Transmission
BS Backspace ECB End of Block SP Space

IL Idle

2. Special graphic characters (in order of aprearance)

Cent Sign * Asterisk > Greater-than Sign
. Period, Decimal Point) Right Parenthesis ? Question Mark
< Less-than Sign ; Semicolon : Colon
(Left Parenthesis - Logical NOT # Pcund Sign
+ Plus Sign - Minus Sign, Hyphen a "At" Sign
{ Logical OR / Slash ' Prime, Apostrophe
& Ampersand, Logical AND , Comma = Equal Sign
! Exclamation Point % Percent Sign " Quotation Mark
$ Dollar Sign _ Underscore ;

CHARACTER SWITCH TABLE

The table of miscellaneous control characters and the translation tables
described above make up the character switch table. The takle of mis-
cellaneous control characters includes:

Source list EOB character
defines the end of an input block. Its initial value is X"26°".
(Do not change the value.) This character should not be used as
input within a command statement.

command system continuation character
indicates that a line is being continued. Normally, an EOB occurs
when the carriage is returned. If the last character before a car-
riage return is a command system continuation character, the 1line
is continued past the carriage return. Initially, this character
is a hyphen (X'60").

Command system break character
tells the system that a command follows. Initially, this character
is an underscore (X'6D').

Transient statement prefix character
is an indicator that whatever follows is sent to a predetermined
entry point for execution. Initially, this character is a vertical
stroke (X'4F').

Concatenaticn character
indicates that the next line should be concatentated with this
line. This charactexr must ke the last character of a line of data
for the text editor, and the CONREC implicit operand must be set to
Y. The system-supplied value for the concatenation character is
colon {(X'7A°'). For more information, see "Concatenating Input Rec-
ords® in Section 2 of Part II.

System scope mask

controls searches for explanatory messages issued ky the user pro-
mpter. Its default value is X*29'. The use of the system scope

appendix C: Prototype Profile 281

User

mask is explained under “"Message File Construction® in Section 5 of
Part 1I.

scope mask

works in the same way as the system scope mask works, but on user-
created messages in the USERLIB. The user may set this mask
according to his own search logic X°29°. The default valupe is
X*29°.

Command prompt string

is issued by the system and requests that a command be entered.,
This may be a string of up to eight characters. The initial
default is an underscore followed by a backspace and a carriage-
return suppression character (colon).

SYSIN keyboardscard reader switch

indicates the type of device from which input will be accepted by
the system. It may ke set with a K for a terminal keyboard, or
with an E to indicate either the keyboard or the card reader. If a
user specifies K as the switch setting, the system does not reco-
gnize his subsequent specification of a card reader as the input
device. The initial value is E.

Carriage return suppression character

282

indicates that carriage return is surpressed when it is the last
character in a message being written to SYSOUT by the command sys-
tem. In this case, the system does not add a new-line character to

the text. The system-supplied value is a colon (X°*7A°').

APPENDIX D: CONTROL CODES ANL CHARACTERS

Tables 22-25 contain control codes and characters that can be used for
formatting printed output and for selecting stackers for punched output.

Table 22. Printer codes

-
f Function | Byte Value (hexadecimal)
I8)
1] T
|Write (no automatic space) H 01 i
|jWrite and space 1 line after printing { 09 |
JWrite and space 2 lines after printing i 11 |
|Write and space 3 lines after printing { 19 |
jWwrite and skip to channel 1 after printing | 89 [
Write and skip to channel 2 after printing	91
Write and skip to channel 3 after printing	99
Write and skip to channel 4 after printing	Al
Write and skip to channel 5 after printing	A9
Write and skip to channel 6 after printing	Bl }
Write and skip to channel 7 after printing	B9 }
Write and skip to channel 8 after printing	(04 § {
write and skip to channel 9 after printing	c9 }
JWwrite and skip to channel 10 after printingj D1	
Write and skip to channel 11 after printing	D9 i
Wwrite and skip to channel 12 after printingj E1	
L y |

Note: To obtain the corresponding carriage-contrcl operations (space
or skip to channel n) without printing, increase the value of the
low-order digit by hexadecimal 2. Example: space two lines - 13;
skip to channel 5 - AB; skip to channel 9 - CB.

P s e g S Sy
e

Table 23. FORTRAN control characters#* for the printer

r

| Fuanction Character

| Skip no lines before printing
|Skip 1 line before printing

|skip 2 lines before printing

|Skip 3 lines before printing

|Skip to channel before printing
{Skip to channel before printing
| skip to channel before printing
|Skip to channel before printing
| Skip to channel before printing
|Skip to channel before printing
| Skip to channel before printing
|Sskip to channel before printing
| skip to channel before printing
|Skip to channel 10 before printing
| skip to channel 11 before printing
|skip to channel 12 before printing
i

+
blank

T S — St — —— ——— —— — el e

WONOU & WN -

e e e S s S s S s S e, WS G S i, B o, S s]
NDPOVONONEWNER | O

L]
| * FORTRAN control characters are defined by American National Stand-

| ard FORTRAN, ANSI X3.9-1966.
L

Apperndix D: Control Codes and Characters 283

Table 24. IBM 2540 punch machine codes

L) T) |
} Function | EBCDIC |Column Binary|

——— + t {
| TYPE AA | | i
| Read, feed, and select stacker R1 { 02 | 22 {
| Read, feed, and select stacker R2 { 42 | 62 |
| Read, feed, and select stacker RP3 | 82 { A2 i
b + t {
| TYPE AB | | {
| Read and no feed or stacker selection i Cc2 | E2 |
| Read, feed, and no stacker selection | D2 | F2 !
i -—- } ¢ .
| TYPE Ba | |]
| Feed and select stacker Rl { 23 | 23 |
| Feed and select stacker R2 { 63 | 63 |
| Feed and select stacker RP3 { A3 i A3 |
{ PFR write, feed, and select stacker P1 | 09 | 29 |
| PFR write, feed, and select stacker P2 | 49 | 69 {
| PFR write, feed, and select stacker RP3 | 89 | A9 |
t } ¢ 4
| TYPE BB ~ | | i
| Write, feed, and select stacker Pl | 01 | 21 i
| Write, feed, and select stacker P2 | 41 | 61]
| Write, feed, and select stacker RP3 | 81 | Al |
L L L ¥l

Table 25. FCRTRAN control characters
for the punch

1] hJ L]
| Function | Character |
L 4 J
T v T
| Select punch pocket 1 | v |
| select punch pocket 2 | w |
L 4 J

284

APPENDIX E: DETAILED DESCRIPTION OF DDEF COMMAND

This appendix describes special use of the DDEF cormand. To define typ-
ical public data sets, see the DDEF command description in Part IXXI. A
typical public data set is created with the virtual access method (VaMm),
is sequential or indexed sequential and resides on direct access public
storage.

Table 26 lists the required and optional fields of the LDEF command for
var ious types of data sets. The complete cammand format illustration of
the DDEF command is shown in Table 26.

Table 26. Format illustration of the CDEF command

L hJ - =

jOperationj|Operand
4.

Di

+
DEF |DDNAME=data definition name
| [, DSORG={PS|RX|VI|VP|VS}]
| , DSNAME=data set name

1
|
4
!
|
| |
| +DCB=({data definition namel(,CSORG=data set organizationl] i
| [,MACRF=type of macros)[,BUFL=buffer lengthl |
| [,DEVD=device typel [,BUFNO=number of buffers)]
| (,BFTEK=buf fer technique] {
| [,NCP=consecutive macro number] {
i [,RECFM=record formatl[,OPTCD={A{|W}] {
| (,LRECL=record lengthl {
| [,BLKSIZE=block lengthl[,KEYLEN=key lengthl {
I [,DEN=tape density] |
| {,TRTCH=data conversion] |
| (,EROPT=erxrror optionl [,PAD=padding] i
| (,RKP=key displacement] i
| [,IMSK=error recovery procedures] |
| {,BUFOFF=1l) 1
|

| DAl ,direct access typel ?
| (UNIT=(TAl,tapedevice typel) |
| device {
|]
| [, SPACE=({CYL| TRK| record length},primaryl, secondaryl [, HCLD]) |
i |
| !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| l
| |
| |
L 4

[, VOLUME=([volseqno|PUBLIC|PRIVATE], {volsernc|PRIVATE],
{volserno|PRIVATE]},...)]

{,LABEL=([file sequence number)(,{NL|SL|SUL|AL|AUL}]
[,RETPD=retention periodl)]

1 {,DISP={MOD| CLD | NEW} }
[,OPTION={CONC | JOBLIB}1]
{,RET=retention codel

b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%
| (, PROTECT={Y|N}]

DDNAME
specifies the symbolic data definition name that is associated with
the data set and that provides a 1link between the data control
block (DCB) in the user's program and the data set definition.

Appendix E: Detailed Description of DDEF Command 285

Specified as: From one to eight alphameric characters, the first

of which must be alphabetic.

To define the PCSOUT data set

for the

DUMP command, PCSOUT should be given as the data definition name.
DDNAME may not begin with SYS; these characters are used to prefix
system-reserved data definition names.

Note: When DDEF is used by an assembler language user, the name
specified for DDNAMF must be the same as the name specified for the

DDNAME operand in the DCB macro instruction.

When DDEF is erployed

by a FORTRAN user, the name specified for LCNAME must be "FTxx-
Fyyy", where "xx" is the two-digit data set reference number, and
"yyy" is the three-digit file sequence number in his FORTRAN

program.

DSORG

indicates the organization of the data set being defined.

ble 27.)

Specified as:

(See Ta-

PS -- QSAM or BSAM (physical sequential access mrethods)
RX -- IOREQ (1/0 request)

VI -~ VISAM (virtual indexed sequential access method)
VP -- VPAM (virtual partitioned access method)

VS -- VSAM (virtual sequential access method)

System default:

VI.

Table 27. Data set organization requirements (part 1 of 2)
T + 1
)r— Data Set s o 1o} :{c] J— |]
| Characteristics | PS | VI | VP | VS | comments |
b e S snge {
|Any data set on a | | x | x | x | i
jpublic volume |] | 1] }
— e e SRR St {
|Any data set on a Il x | x | x | x {pPS aprlies to tape or direct access |
jprivate volume | i i | jvolumes; VS, VI, and VP apply only |
] | | | jto volumes on direct access devices.}
[S } L i i 1 3
| 2D 1) Al 1 T T R 1
{Any member of a parti-|] | x |} | x |Same partitioned data set may |
jtioned data set i | | i] include both VS and VI mernbers. i
| | i | | | (Member must be either VS or VI.)]
L L 1l 1 1 <]
¥ T T v N3 ¥ h
|SYSIN data set i | x | f x | |
' i 1 i L 1 F
| Sl k3 T 1] L g L1 1]
jData Sets Created by | i } |] }
Jor Used by Lanquage- | | { I] i
|Processing Commands | i | ; } g
| i]]
|Source data set for] I = | i |Line data set only; if source data |
}language processing] i | i [sets are entered from the terminal, |
| |] | I ja line data set is built i
1 | | i i Jautomatically. |
t + + +--—1% + 4
| Source statements] | = |] x |JLine data set will be built from {
| stored as part of the | | | i |source statements.]
|SYSIN data set | i l } ! j
b e B e !
lObject module produced]] i] x |Object module autamatically becomes |
{by the language pro- |] | | |2 member of the most recently de- i
| cessor } | | i]fined job library, if any, or of the]
}] i | } |user®s library (USERLIB). |
L L L ' i 1. 3

286

Table 27. Data set organization requirements (part 2 of 2)

|
1]

Data Set
characteristics PS

3%

“"—-—‘-0-_—-'-*P'—-—""4#—-—“"“""“—-—“‘"-‘?—.’-“-—_ .4,.._.-.4_,_—-—_,..1-—__..—_._.-4;-—4

"B

<
'--—-—-;—-—'_—-—‘q-—-—-—-.4,.-*-.—-(--—--——-—qnn——-i——-—-.__._..-4,_,_.-—_.-.._.__._—_“,.....-—- g

<
7]

Comments

‘lr'—"-'w

L]

{Job library
| —

{;isting data set pro-
duced by the language
processor

—— — s s
PURSE QRIS Tp—"

Data Sets Used for

——

1/0 Operations
PCSOUT data set

Input to the WT
Command

]

Input to the PRINT
Command

®

L

{input to the PUNCH
]| Command

L]

—
|pata Sets for
l§gecIaT Command Usage

Line data set only.

L_—n—sa_dig—m-ig——dhq—ﬂ

.-_-0-—-—-——-——-u--—.(p_—q-—-—qp-—-———-ﬁ-—_——qp...-v-

|pata set used by the
JLINE? cormand

Line or language processor listing
data set only.

-

| pata set created by
| the DATA command

]

option; if VI, it must be line
data set. The member may be VS line
or VI line.

®
e o -, e
=1
(2]
R

ta set created by
e MODIFY command

L

|{User option determines whether VI is
|for a line data set. The member
jmust be VI.

il

qp—ggqr-—

T N

| User option determines whether VI
|is for a line data set. The member
|must be VI.

i

|Data set created by
| the text editor

]

--—_q-a-_.-—w_.-—-h-__—.‘p-—-.—--——-—-——-n——-—-)—_—u)———q.‘_——-_-p———-4p-—

-
,.—_-—qp———qp—-_—....—_q-——_——ib-——q_——.{-_—

-
-

#Note: If one DSORG option is checked, the data set must be that organization.
If more than one option is checked, select either organizationl

e o e e s W e et e St e B, e ot e 10 o s

g e s e s

DSNAME
specifies the name under which the data set may be cataloged or re-
ferred to for temporary reference. '

specified as: a fully qualified data set name or memker name of a
VPAM data set. When specified, the member name is enclosed in
parentheses and immediately follows the VPAM data set name.

Note: When a data set created under OS or 0S/VS is introduced into
TSS for the first time, the name specified for DSNAME must ke pre-
ceded by an asterisk (%). Sulksequent references to this data set
are not prefixed by the asterisk. The data set name preceded by an
asterisk may have a maximum of 44 characters.

Appendix E: Detailed Description of DDEF Command 287

For ASCII input, you may specify any nonalphameric characters in
DSNAME. However, if nonalpharneric characters are specified, DSNAME
must be preceded by a blank and must be enclosed by single quota-
tion marks. For example:

DSNAME= *dsname’

DCB
specifies data control klock inforration.
Detailed descriptions of the DCB suboperands are given in Assembler
Programmer's Guide and FORTRAN Programmer's Guide.
Note: If the data set is on tape or will be on tape, the DEN sub-
operand must be furnished to specify tape density, unless the tape
conforms to the DEN default value, which is set at system
generation.
UNIT
specifies the type of device required by the data set. Direct
access devices may be specified for either public cr private
volumes. The other types of devices and unit affinity may be spec-
ified for private volumes only. Allowable kinds of devices are
specified at system generation and, therefore, may be changed.
pal,direct access typel
specifies the type of direct access device.
Specified as:
2311 - 2311 disk 3330 - 3330-1 disk
2314 - 231472319 disk 333B - 3330-11 disk.
System default: the type of direct access device specified at
system generation.
TAl,tape device typel
specifies magnetic tape device is required for the data set.
Specified as:
7 - seven-track tape, data converter not required
70C - seven-track tape with data converter feature
9p2 - 9-track tape with 800 bpi capability
9p3 - 9-track tape with 1600 bpi capability
9p4 - 9- track tape with 6250 bpi capability
system default: the type of tape device specified at system
generation.
device
specifies the symbolic device address of a nonstandard device.
specified as: a four-digit hexadecimal symbolic device
address.
SPACE

288

indicates the direct access storage allocation for the data set.

Specified as:

CYL
space requirements are expressed as number of cylinders.

HOLD

TRK
space requirements are expressed as number of tracks.

(record length)
space requirements are expressed as a decimal number that speci-
fies the average length of the physical records; the number must
not exceed 32,767.
system default: if the data set organization is QSAM or BSAM (see
DSORG), the space requirements are assumed to be expressed in terms
of cylinders. If the data set organization is VISAM, VPAM, or VSAM
(see DSORG), the space requirements are assumed to be in pages (of
4096 bytes).

Note: this field must be defaulted if the data set organization is
VAM.

(primary)
a one- to three-digit decimal number that indicates the amount of
space to be allocated initially. This operand may express space
in terms of tracks or cylinders or in terms of number of pages.

system default: the primary space allocation specified at system

generation is assumed.

(secondary)
a one- to three-digit decimal number sgpecifying the amount of ad-
ditional space to be allocated each time the space already allo-
cated has been exhausted and more data is to be written. No more
than 256 pages are allocated at one time even if a number greater
than 256 is specified.

system default: +the secondary space allocation specified at system
generation.

specifies the unused storage assigned to the data set being defined
is not to be released when the data set is closed.

Specified as: HOLD

system default: the unused storage is released when the data set
is closed.

Note: If the SPACE operand is not specified, the direct access
storage allocation specified at system generation is assigned.

1f DISP=0OLD, the SPACE operand is ignored.

VOLUME

specifies the volume on which the data set resides. This field
must always be used when creating a new data set residing on a pri-
vate volume or when referring to an existing uncataloged data set
residing on a private volume. This field must also be used when
expanding an existing private data set. When expanding an existing
private cataloged data set, only the new volumes to be added to the
data set (PRIVATE or volume serial number) need be referred to.
This field is never required for data sets on public volumes. How-
ever, this field may be specified for new data sets on public
volumes, if only existing public volume serial numbers are speci-
fied. 1Initial space allocation is limited to the specified
volumes.

specified as:

Appendix E: Detailed Description of DDEF Command 289

(volsegno}
a one- to four-digit numker specifying the volume sequence number
of the first volume of the data set to be read or written. It is
meaningful only if the data set has SAM organization, is cata-
loged, and its earlier volumes are to be skipped.

PUBLIC
indicates that the data set is to be placed on public storage
volumesz. PUBLIC may not be specified when a volume serial number
is used.

PRIVATE
specifies that volumes are to be allocated from the system pool
{that is, the scratch or disk available toc the operator). Once
assigned, the volume remains the user®s, exclusively, until he
notifies the operator that it can be returned to the pool. The
user must use this option to reguest initial or additional
scratch volumes for data sets on private volumes. PRIVATE must
not be specified when a volume serial number is used.

(volserno)

. from one to six alphameric characters specifying the volume seri-
al mumbers that identify the volumes on which the data set
resides. This suboperand is required for old, uncataloged data
sets that reside on private volumes or to specify initial or ad-
ditional volume serial numbers for data sets con private volumes;
it is optional for new data sets that will reside on public
volumes. For ASCII tapes with ncnalghameric characters in the
volume serial number, the volume serial number, preceded by a
blank, must be contained in apostrophes.

System default: if VOLSECNO is specified, the data set is assured
to be cataloged, and the volume serial numbers are retrieved from

the catalog. If PRIVATE oy PUBLIC is specified, VCLSERNO must be

omitted, and a volume serial number is assigned Ly the systen.

Note: VOLUME may be defaulted if a new data set is to be created
on a public volume or if an old, cataloged data set is being
defined.

LABEL

290

specifies the labeling conventions.

specified as: (L.le sequence number) -- a one- Or two-digit deci-
mal number specifying the file sequence number of a data set resid-
ing on a tape, and that has multiple data sets on a tape volume.

system default: the data set is assumed to be the first (or only)
one on tne tape volume.

Five suboperands specify either the type of labeling desired or the
absence of labeling:

NL - no labels

SL - standard labels (as specified at system generation)
SUL - standard and uscer lakels

AL - standard ASCII labels

BRUL - standard ASCII and user labels

Systemr default: SIL.

DISP

ihe fcllowing suboperand can ke used to indicate the number of days
a data set is to be saved.

RETPD
retention period

specified as: a four-digit decimal number; this sukoperand is
applicable for data sets on direct access volumes or labeled
tapes.

system default: O days.

Note: If the entire LABEL operand is defaulted, the labeling con-
venticns specified at system generation are assumed, unless the
data set being defined is already cataloged. If the data set is
cataloged already, latel inforration is retrieved from the catalog.

specifies whether the data set already exists or is to be created.
Specified as:

MOD - the data set being defined exists; an addition to it is being
made

OLD - the data set being defined exists
NEW - the data set being defined has not yet been created

Note: MOD causes logical positioning after the last record
of the data set.

syster default: OLD if the data set is cataloged; NEW if it is not
cataloged.

Note: It the user specifies DISP as OLD, NEW, or MOD, and this
does not agree with the actual state of the data set, then:

In conversaticnal mode, the user receives a diagnostic message
so that he can correct this error.

in nonconversational mode, the task is abnormally terminated.

OPTION ’

specifies that either a job library is being defined or a data set
is being added to the concatenation of data sets indicated by the
DDNAME operand.

specified as:

CONC
only SAM data sets that are not job libraries can Le concatenated
with one or more data sets having the same CDNAMES. The order of
access for concatenated data sets is the same as the order in
which they are defined.

JOBLIB
specifies that the data set being defined is toc be used as a job
library. The name specified in the DSNAME operand is entered
intc the program library list.

specifies the catalog attributes to be assigned to a VAM data set.

specified as: P or T, C or L, or U or R.

Appendix E: Detailed Description of DDEF Command 291

-- permanent storage
-- temporary storage
-- erase at CLOSE
erase at LOGOCFF
-- unlimited access
~-- read-only access

dCeonw
|
}

System default: PU is assumed; when T is specified, LU is assumwed;
when P is specified, U is assumed.

Note: A data set is not erased at logoff if a RELEASE command has
been issued for it and the retention code has been specified as
RET=T.

PROTECT
specifies whether to mount the tape with or without the file-
protect ring.

Specified as:

Y - mount tape with ring out.
N - mount tape with ring in.

System defaunlt: If DISP is NEW or MOD, the tape is mounted with a
ring inserted. 1If DISP is OLD, there is no default; the decision
depends on the installation's operational procedure.

runctional Description: The DDEF command causes a system entry tc be
established for the data set definition. The link Letween this defini-
tion and the problem prcgram's reference to the data set (through the
DCB) is the DLCNAME. The entry containing the data set definition is
maintained until the user logs off or until, through the RELEASE com-
mand, the data set definition is deleted.

The DDEF command also results in a request for device allocation and
volume mounting when the defined data set is private and resides on a
demountable volume such as a reel of tape or a disk pack. A request for
a private device will not ke fulfilled if the user has exceeded his
ration. :

Prograrming Notes: The DDEF command that defines a cataloged data set
is brief and simple. The required operands are CLNAME and CSNAME.
DSORG is nct necessary because the organization of the data set is de-
scribed in its catalog entry. Cther operands are unnecessary.

DDEF commands that define uncataloged data sets may be divided into two
groups: those defining data sets that are generated during execution of
the program, but do not yet exist; and those defining existing data
sets. 0ld, uncataloged data sets can exist only on private volumes.

To define a new data set that is to be written on a public volume, the
user may use the DDNAME, DSNAME, DSORG, SPACE, and ILABEL operands.
Exactly which fields he uses, other than the required DDNAME and DSNAME,
depends on the characteristics of the particular data set to be defined.

To define a new data set that is to be written on a private volume, the
user must give the DDNAME, DSNAME, UNIT, and VOLUME operands. He may
also furnish the DSORG, DISP, SPACE, and LABEL operands.

The user defines an old, uncataloged data set as it exists on his pri-
vate volume. He must use the DDNAME, DSNAME, DISP, VOLUME, and UNIT
operands. He may also use the DSORG and LABEL operands. The DCB
operand is required to specify tape density for any data set on tape,
unless the tape density matches that estaklished at system generation.

292

To change the DDNAME assigned in a previous DDEF command, the user must
issue a DDEF command with a new DDNAME and the same DSNAME that was pre-
viously specified. Any other operands entered are ignored. If the user
wants to change the other parameters, he must issue a RELEASE command to
delete the previously issued DDEF command and re-issue the DDEF command
to establish a new system entry for the data set definition. Table 28
summarizes some operations for which the DDEF command is used.

Table 28. Typical

use of DDEF operands

|] iy vy v v 7 Ll LS v 1
l |D] 1D] | B | vl 10}
I DI D] S	1	Iis{ojJL]P	
IN] S	NJC] JU]S1L{A	T]
Operation jajol Al T} NjAJU]B	I		
IM	R	M	S
	E	G	E] S B
b ——t— -ttt			
Read cataloged data set	X1	X (X1} i i	i i
F T M et e oot SR			
Read uncataloged data set] X JIX1} X	X] X] X jEx1}] i
L .1 1 4 s i 1 1 1.1 *			
¥ i T T 1 ¥ T T T K T			
Write data set on public	X	IX1}] X (X1}	
volume {			
t +-—-+-—+---+-—+-+--—+—4——4			
jwrite data set on private	X	IxX3) X	X
volume		I	I I
- +-—-4-—--———4-——4-——t—a—t—q
|Modify data sets on private | X {IXI} X | X | | X | | X (X3 {
| volumes | | I | P | 1 | |
- T B a e e Pt S e
|Concatenate cataloged data | X | X X} X | | [X1] | IX1}IX3] }
| sets while reading private | } i I | | | | i | |
| volumes (for each concate- | | | | | | | |] | |
| nated data set except the | | | | | | | i | | {
| first in concatenation) } | | | | | | | } | |
—tn e d s ;o i g L 4 4) N |

l,___-_._

|Note: (] indicates that the operand may

L

be used, but is not mandatory.

[

The following examples snow one way of entering a LLCEF command to get

the specified operation performed.

In each example, DDNAME, DSORG, and

DSNAME are specified positionally; the other operands are given in key-

word notation.

1. Read a cataloged data set:

ddef ddn,testl

2. Read an uncataloged data set:

ddef ddnl,ps,test2,unit=(da,2311),volume=(,012300),disp=new

3. Write a data set on a puklic volume:

ddef ddn2,vp,test3

4. Write a data set on a private volume:

ddef ddn3,ps,testt,unit=(ta,9),volume=(private)

The VOLUME operand could ke entered as:

volume={(,005431)

5. Modify any data set of a private volume:

Appendix E: Detailed Description of LDEF Command 293

ddef ddn#é,ps,testS5,unit=(ta,9),volume={(,012301),disp=mod
6. Concatenate cataloged data sets while reading private volumes:
ddef ddné,ps,testé,disp=old
ddef ddné,ps,test?,disp=o0ld,option=conc
ddef ddné,ps,test8,disp=old,option=conc
The DDEF command also has several special uses. 2Among them are:
1. PDefine a job library:
ddef ddi,vp,dsnl,option=joklib
No other operands are necessary. If the data set already exists,

it is defined as a jokL likrary; if it does not exist, a new job li-
brary is created.

2. Define a data set for dumps. Mandatory operands must be given.
ddef pcsout,VI,dumpl

To corplete the DCB of a data set at execution, include the DCB operand.
Other operands are included as needed for the particular data set.

To concatenate data sets, use the CPTION=CONC operand. Other operands
are provided by the user as needed for a particular data set. The
OPTION=CONC operand must be given in the DDEF command for data sets to
be concatenated, except for the first-defined data set in the concatena-
tion. Each of the remaining data sets in the concatenation must have
the same DDNAME as the first-defined data set. :

294

APPENDIX F: CURRENT LINE POINTER

After a text-editing command has been executed, the current line pointer
(CLP) is positioned according to certain general rules:

e If the command is canceled by the system, CcLP is unchanged.

e If the N2 value is equal to the last record in the data set or
region, CLP is set to the value of N2 plus the value of INCR.

e If the N2 value is not equal to the last record, CLP is set to the
line after N2.

For each text-editing command, CLP is positioned as follows:

CONTE XT
to the line following the last line searched (N2); if N2 is the
last line, CLP is set to N2 plus the value of INCR.

CORRECT
to the line after N2; if N2 is the last line, CLP is set to N2 plus
the value of INCR.

DISRBLE, ENABLE, POST, STET
CLP is not changed.

EDIT
to the first line in an existing data set; to the value of BASE
(the system default is 100) for a new data set.

EXCISE
to the value specified by Nl.

EXCERPT
to the value of the last line inserted plus the value of INCR or to
the next-existing line number, whichever is less.

INSERT
to the line number of the last data line entered plus the value of
INCR. If this exceeds the next-existing line number, CLP is set to
that line number. 1If no data lines are entered, CLP is set to Nl.

LIST
to the line after N2; if N2 = last line, CILP = N2 + value of INCR.

LOCATE
to the record containing the search string if the string is found;
if the string is not found, CLP is set to the line following N2.
If N2 is the last line, CLP is set to N2 plus the value of INCR.

NUMBER
to the last line renumkered plus the value of INCR or to the next-
existing line, whichever is less.

REGION :

to the first line in region if the region exists. If the region is
not currently in the data set, CLP is set to the new region name
and a line number specified by BASE (system default is 100).

REVISE
to the value of the last data line entered plus the value of INCR.
If this exceeds the next-existing line number, CLP is set to that
line number. If no data lines are entered, CLP is set to M.

UPDATE
CLP is not changed.

Appendix F: CURRENT LINE POINTER 295

APPENDIX G: COMMAND FORMATS

Table 29 summarizes the command formats that appear in Part III. This
appendix can be used as a reference to the format of a command if you do
not need the detail presented in Part III.

Table 29. Command format summary (part 1 of 6) .

1
[Operat10n|0perand]
+ {
IABEND | |
b $ — 4
| ABENCREG | |
F t - — {
|ASM |NaME=module name [,STORELC={Y|N}] |
i | { ,MACROLIB=({data definition name of symbolic portion, |
| | data definition name of index portion}(,...1)] |
{ | (,VERID=version identification][,ISD={¥{N}1{,SYMLIST={Y|N}] |
i | [,ASMLIST={Y|N}][,CRLIST={Y|N|E}] |
| | {,STEDIT={Y|N}][,ISDLIST={Y|N}]([,PMDLIST={Y|N}] |
| | [,LISTDS={Y|N}]({,LINCR=(first line number, increment)] |
¢ + — {
| AT {instruction locationl,...] |
b } ---
| BACK | DSNAME=data set name
i
F e
| BEGIN |application name(,application parameters] |
b 1 4
| BLIP | TIME=, *READ= i
b + 4
| BLIP? l |
b + {
| BRANCH |INSTLOC=instruction location |
i 4 F |
L Ll 1
|BUILTIN |NAME=command namel,EXTNAME=bpkd macro namel i
| | (,PROLIB=data set namel |
b t i
Ic | |
F t ———]
icA I {
’ t - - 4
jCALL { (INAME=entry point name) [,module parameters] |
L | .]
1] T 1
| CANCEL | BSN=batch sequence number]
1 1 - |
¥ Ll 1
|CATALOG |DSNAME=current data set name{ ,STATE={N|U}]) [,ACC={R|U}] |
| (Form 1) |[,NEWNAME=new data set namel |
[4
T B
| CATALOG |GDG=generation data group name,GNO=number of generations i
| (Form 2) |[,ACTION={A|O}][,ERASE={Y|N}] |
F ¢ :
|CB | |
F + -= -
| CDD |DSNAME=data set name, _ |
| | {data definition name| (data definition namel,...] |
IS i 4
L] T 1
|CDS |DSNAME1=input data set namel(member namef,...1)], |
| | DSNAME2=copy data set namel(member name)] |
i | l,ERASE={Y|N}] [,COPYBASE=first line number, }
| | COPYINCR=increment] [,REPLACE={R|I}] }
|8] 4
1 3 T L]
| CHGPASS | INEWPASWD=password] |
L 1 —_— 4

296

Table 29. Command format summary (part 2 of 6)

L}
{Operation{OPerand i
b + =
| CLOSE | [DSNAME=data set name] [,TYPE=T) |
i |1, DDNAME=data definition name) |
L i 3
L 2 T
| COBOL {NAME=modulename [,0S0PTS=(0ptl,opt2,...)] 1
] | [, SOURCEDS=sourcedsname) i
I8 i 4

Al
|CONTEXT | [N1=starting position][,N2=ending position] 1
i | . STRING1=search string(,STRING2=replacement stringl |
L i 4

T
{CORRECT | (N1=starting linel [,N2=ending linel[,SCOL=starting column] }
i | [, CORMARK=replacement correction characters] [,CHAR={C| M|H}] |
b 4 4
3 T
| DATA | DSNAME=data set name 1
] | (RTYPE={I|LINE|FTN|CARD|S}]
| | [,DBASE=first line number] [,DINCR=increment] |
i 4 &4
L 3 T
| DDEF | DDNAME=dat a definition namel ,DSORG={VI|VS|VP}] 1|
| | ,DSNAME=data set name
- + '
{DDNAME? | [JOBLIB={Y| N}] |
L 4
¥ T
| DEFAULT | {operand=(valuel}(,...1
i i y
1 # T
| DELETE | [IDSNAME=data set namel |
= ¢ !
|DISABLE | |
¢ e 4
|pIspLAY | data field name or expressionl,...] |
| | id? data field name or expression (,...1 1
L Il 3
1 T
|DMPRST | FROMDEV=(2311] 2314| 24xx| 3330] 333B} ,FRVOLID={volid| (volid]
! | {,volid 1)}, TODEV={2311] 2314| 24xx] 3330| 333B} |
} |[,TOVOLID={volidi(volid[.volid])IPRIVATE}] i
| | [,NEWVLID=volidl { ,ARITCHK={YES|NO}] {,LABEL={ RETAIN|NC}] \
| | {,1,RUNMODE= (BACK| FORE} |
t t 4
{DSs? | NAMES= data set name| (data set namel,...1]]
i I} d
L] T
| DUMP | data field name or expression(,...] }
i | id? data field name or expressionl(,...] |
L L 4
1] T
| EDIT |CsNAME=data set namel(member name) 1 { ,RNAME=region namne} }
] | [,REGSIZE=region name lengthl] |
i i v i
| S T A |
|EJECT i i
b + —
|ENABLE | |
b + 4
| END l |
b +— -4
| ERASE | [IDSNAME=data set namel((rember name)1])[,SHARED={Y|N}] |
i i J
L T
{EVV | DEVICE= {2311 2314] 3330| 3338} 1
| | , VOLUME=(volume serial number {,...]) 1
[& L
i T
| EXCERPT |DSNAME=data set name{{member name) 1 [,RNAME=region name]
| | [,N1=starting line(,N2=ending linell
i L
[4 T
| EXCISE | [Nl=starting linel [,N2=ending linel
L ; 8

nppendix G: Command Formats

297

Table 29. Command format summary (part 3 of 6)

| v N
joperation|Operand i
L 4 1

¥
ltEXECUTE |DSNAME=data set name |
L L

T
IrEXHIBIT |OPTION1={BWQ[,TYPE={ALL|BSN.number}]|
| | UIDI[,TYPE={CONV|BACK| UID. user id{ALL}]}
. L

+
| EXTT | [SIRTEST=(Y|N}]
1 i
L 3 T
| EXPLAIN |MSGID|ORIGIN|word|TEXT|RESPONSE| |
{ | [,message identificationl]|MSGE|MSGS}
L L
| § Ly
| FILEDEF |DDNAME=ddname ,DSORG=VI |VS|VPI[,DSNAMF=dsnane...]
| | {,MACRO=CONC] [,0SDDN=0sddname) ([,O0SKEYLE=number]
i 4
?FILEREL Tosnm=osddname
i 4
¥ L)
| FTN |{NAME=module namel,STCRED={¥|N}][,VERID=version
{ | identification] i
| |[,ISD={Y|N}][,SLIST={Y|N}][,OBLIST-‘-[YlN}][,CRLIST=(Y|N}J 1
| | [,STEDIT={Y|N}) [,MMAP={Y|N}]1[,BCD={Y|N}]} [, PUBLIC=(Y|N}] i
| | (,bLISTDS={Y|N}] [, LINCR=(first line number,increment)] |
} d 1
[T 1
{ FTNH | NAME=modulename [,0SOPTS=(optl,opt2,...)]]
{ | { , SOURCEDS=sourcedsnamel
'S i
| GAV | [TYPE= {SYN| DEF| CSW}]
- + .
jGDV |DFLT=term }
L 4 J
3 L) i)
|Go |
F +
| GOoTO | {command JOUT] " comment*}
L i
T T
jesv |NAME=value or term [,SEARCH={T|V}]
i+ R
[3 Ll
| HASM |{NAME=module namel,0SOPTS=(optl,opt2,...)]) i
| | [,SOURCEDS=sourcedsnamel |
. - d
1] T 3
|IF jcondition i
- 4 :
| INSERT | [NL=starting linel (,INCR=increment] {
%] 4
L 3 Ly : |
{JOBLIBS |DDNAME=data definition name |
F 1 4
|K I |
— t i
KA I |
L. 4 - |
| 4 v 1
| KB | |
b= ¥ :
|KEYWORD | [PROCNAME=command namel |
L 4--....‘
L3 T
JLINE? |DSNAME=data set namel((member name) } . |
] |{,{line mumber| (first line number,last line number)} ([, ...1} |
s L 4
L] T 1
|LIST | [N1={starting position|CLP}](,N2=ending position]} |
] | {,CHAR={C|H|M}] |
; { 4
|LL | L.GH=, *TRUNCATE=, *RESET= |
L N 3

298

Table 29. Command format sumaary (part 4 of 6)

B 4
0peration|0perand i
——— — .‘
J LUK |NAME=miodule name { , STORED={Y¥| N}] |
i | [,LIB=data definition name of libraryl |
] | {,VERID=version identification) (,ISD={Y|N}]1[,PMDLIST={Y|N}] |
i 1[,LISTDS=[Y|N}](,LINCR=(first 1ine number, increment)] |
———————— b i mmmmm e m oo ooy
| LOAD | [NAME=entry point namel |
ot -1
| LOCATE | [NL=starting positionl [,N2=ending gositionl

| | {,STRING=character stringl

|
|
_______________________________________ 4
—————————— Al
| LOGOFF | |
PO -— 1
| LOGON | user jdentification{,password}(,addressingl[,charge numrrber] |
| |{,control section packinal [,maximum auxiliary storagel |
{ | {,pristinel i ,user IVM codel {
B i
|LTDS | |
T — ——-
| MCAST | (EOB=end-of -block character] |
| | {,CONT=continuation character] {
| | {,CLP=break character] |
! | [, TRP=transient statement prefix character] |
i | {,RCC=concatenation character) |
{ | [,SSM=system scope mask] |
| | ([,USsM=user scope mask] |
| | (,KC=keyboard/card reader character] {
| | [,RS=carriage return suppression character] i
| | [, CP=command-prompt stringl {
¢ t ————= - 4
|MCASTAB | (INTRAN=(Y|N}]{,OUTRAN={Y|N}] |
k- + - — :
{MODIFY |SETNAME=data set namel ,CONF=R] [,LRECL=record length, |
i | REYLEN=key length,RKP=key displacement,RECFN={V|F}] |
| |, FTN={Y|N}] 1
————————i— —————— 4
| NUMBER { {N1=starting linel[,N2=ending 1inel{,NBASE=base number.] |
] | [, INCR=increment] |
b 4
T - - - 1
{obcC |ODCMOD=mOdu1e[,ODCPLI=Y|NJ] [ODCERASE=Y|N] |
T TS 1
josSDD? | l
i — — e s
¥
| OSRUN |modulel,* parm'}
i e e e e — _—
r
{PC? |NAMES= {data set name}(Jdata set namel,...1)}
L } e e it e o e . e e e e i o e

3 T -

| PERMIT | DSNAME={data set name| *ALL}

- | [,USERID={ (user identificationl,...1)|*ALL}]
| [,ACCESS={R|RO|RW| U}]

(NAME=module name} [,PLIOPT=compiler option list}
{,PLCOPT=language controller optionsl]
[,S0URCEDS=source data set namel

{ ,MERGELST=converter input list]
(,MERGEDS=converter input data set]}
[,MACRODS=intermediate data set name])

[, EXPLICIT=external names to be changedl
[,XFERDS=transfer vector data set namel

)

e

P
L————-———-—dh_—.—dh—-.&h—-t-

[s s o = anine. Goatn, . . BN s S
o s G e S wn e s e s

Appendix G: Command Formats 299

Table 29. Command format summary (part 5 of 6)

_— T B
|OperationjOperand i
I 4 J

T 13
iPLIOPT | NaME=modulename [,0SOPTS= (optl,0pt2,...)] |
| | { , SOURCEDS=sourcedsname) {

IS i 2
| POD? | (PODNAME=data set namel [,DATA=Y] [, ALIAS=Y] 1
| | {,MODULE={module name|*ALL}] |
b { i
jpost 4]
¥ T —1
| PRINT | DSNAME=data set namel,STARTNO=star ting position] |
| | {, ENDNO=ending position] |
1 | PRTSP=EDIT|1{2] 3| |
i | [,HEADER=H] [,LINES=lines per pagel [,PAGE=P] |
| | [, ERASE={Y|N}] [,ERROROPT={ACCEPT|SKIP|END} } |
{ | [, FORM=paper form] [,S5TATION=station idl} |
L 4 3

T]
iPRMPT IMSGID-message identification 1

i | [,INSERTn=inserted characterl,...]] |
L 4 3
¥ T 1
| PROCDEF |NAME=procedure namel,PROLIB=data set namel }
i 1]
4 L4 4
| PROFILE | [CSw={N|Y}] 1
- $ {
| PUNCH |DSNAME=data set nawel,] i
| | [,STARTNO=starting position}!,ENDNO=ending positionl] |
| | [,STACK={1] 2{ 3| EDIT}) [,ERASE={Y¥|N}]I ,FORM=card form] |
I % 1 4
[3 T ——— 4
| PUSH | [SIRTEST={Y|N}} |
| - 4 J
1]] 1
|QUALIFY | =[link-edited module name.lobject module name |
L 4 q
L v

REGION | [RNAME=region namel |

4 . |
v 1
RELEASE |DDNAME=data definition namel ,DSNAMF=data set namel |
| {, {SCRATCH| HOLD}1 [, {SCRATCH| HOLD}] |
L d
L))]
REMOVE | (statement number(,...J}ALL}] |
1 Jd
T |
RET | DSNAME=dat a set name,RET=retention code |
4]
T 1
REVISE | [IN1=starti linel {,N2=ending linel[,INCR=increment] i
ng
1 d4
T R

RTRN | |
- + 4
| | (TA=number of devices(,type of devicel) l
| SECURE] {,...1 i
| | (DA=number of devices(,type of devicel) |
| 8 4 4
1 3 T)]
| SET |{data location=valuel{,...] |
L L 4

T - 1

{SHARE | DSNAME=data set name,USERID=owner®s user identification |
i | [,OWNERDS={owner's data set name|*ALL}] j
+ 4
| SPACE |NUMLINES=(number lines to space) _J
L i
|] R '}
| STACK | I
t +
|STET |
b +
| sTOP | |
L 1 . 3

300

Table 29. Command format summary (part 6 of 6)

T M
| Operation |Operand {
t 1 |
|STRING | |
i 4 3
| T k)
| SYNONYM | {term={valuel}l},...] |
- + , 4
|TIME { IMINS=mimutes] |
b + —-—
| TRANSLAT |TYPE,FROM,TO,USN,CP]
L i d
L 3 T . |
| TRAP | FETCH| STORE| REF}, [location{:location}] |
| | |
i |GR, {nR, ... | nR:nR} j
i | |
i]BRANCH(,LOCATICN{:LOCKTION}[,LOCATION{:LOCATION}}} {
L 4 K
| auaman ki L
{TV | DSNAMEl=tape data set namel ,DSNAME 2=VAM data set napel |
| | {,OVERLAY=Y|N] [,RETAIN=Y| N} [,FROMID=USER IDENT] |
| | (,TOID=USER IDENT] 1
i i 3
1] T)
JUNLOAD | INAME=entry point name) |
b + {
| UPDATE | |
b 4 4
[3 T 1
|USAGE | |
e |
{vT |DSNAME1=VAM data set namel,DSNAME2=tape data set name) |
| | [, ERASEDS1=Y|N} [,RETAIN=Y|N] |
{ | {, FROMID=USER IDENT] {,TOID=USER IDENT] |
| | ([, CATDS 2=Y|N] |
¢ + 1
|vw | DSNAMEl=current data set name(,DSNAME2=new data set namel |
| | (, ERASEDS1=Y|N) { ,OVERLAY=Y|N] { ,RETAIN=Y|N] \
| | {, FROMID=USER IDENT] {,TOID=USER IDENT] |
p————t §
jWT |DSNAME=current data set name,DSNAME2=tape data set name }
| | [,VOLUME=tape volume number]{ ,FACTOR=blocking factor] |
} | {,STARTNO=starting position] [,ENDNO=ending positionl]]
i | (PRTSP={EDIT|1]| 2|3} |
| | (,HEADER=H][,LINES=lines per pagell[,PAGE=P] {
| | [, ERASE={Y|N}] (
i L —_— 4
L 1 T) |
|ZLOGON | |
L don d

Appendix G: Command Formats

301

APPENDIX H: KEY TO VALUES DISPLAYED BY

USAGE COMMAND

Table 30 summarizes the output of the USAGE command. The field akbre-
viations are defined and the meanings of the statistics associated with

each field are given.

Table 30. Explanation of output from the usage command (part 1 of 2)

r T 1
} Statistic |
| Field b - T 4
| Abbreviation | Ration | Current Usage |JAccumulative Usage |
F + $ + 1
|TEMP STOR | Number of pages |Number of pages |[Number of page- |
| (temporary stor-javailable for jcurrently occu- |seccnds utilized in]
age) {this user's data	pied by this	storing this user®s	
	sets. juser's data	data sets since	
		sets.	the accumulative
i i	statistic was		
]		last set to 0; cal-	
} i } . jculated by sumwxing			
PERM STOR	{	the time (in sec-	
(permanent stor-}	Jonds) each page {		
age)			was, or has been,
]]assigned to tre		
!	{user.		
t—— } 4 G 1			
{DA DEV	Numbexr of de-	Number of de-	Number of device-
(direct access	vices of this {vices of this	seconds utilized Ly]	
devices) jtype available	type currently	this user since the]	
b Jto this user.]assigned tc this}accumulative sta-		
MAG TAP.	juser. Jtistic was last set		
{magnetic tape)	i {to 0; calculated by		
b 1		summing the time i	
PRINTERS			(in seconds) each
(high-speed i		device was, or has	
printers)			been, assigned to
b i		this user.	
RD-PU	!		
(card readers			
and] ! !		
card punches)]	
r + + + 1			
TSS TASKS	Maximum number	Number of active	Not arplicakble]
jof tasks that	tasks currently		
Jcan be associ~	associated with		
	ated with this	this USERID.	
	USERID. i	i	
p-—— $-—- : + o			
BULKIN	Not applicable	Not agplicable	Tctal number of 1
{ i	bulk input {(BULKIN)		
l		land bulk output	
i		(BULKOUT) tasks as-	
- 4] |sociated with this |
| BULKOUT | | |USERIL since this |
| | | |accumulative sta- |
| | | |tistic was last set]
| | | |to O. i
L 4 1 —_ 4

302

Table 30. Explanation of output from the usage command (part 2 of 2)
; ; Statistic
| Field — - T
| Abbreviation | Ration |current Usage |Accumulative Usage
= + ——-%
{CPU TIME |Maximum amount |[Time spent exe- |Time spent exe-

{time permitted

|to tasks associ-

| ated with this
| USERID; pre-
|sented in the

} form hhh.mm.ss,
|whexe hhh is in
jhours, mm is in
{minutes, and ss
}is in seconds.

(execution time)jof CPU execution]cuting in the

{CPU since the
Jcurrent user

jtask was logged |was last set to 0;
jon; presented in|presented in the

| the form mm.ss.

|[nn, where mm is |where hhh is in

{ in minutes, ss
]is in seconds,
fand nn is in
jmilliseconds.

jcuting in the CPU
}since this accumu-
llative statistic

|form hhh.mm.ss,

{hcurs, mm is in
jminutes, and ss is
|in seconds. It is
|this value that is
jcompared to the
|maximum amount of
|CPU execution time
|permitted (the
jration) to see if
Jthe user has ex-
jceeded his limit.
1

e oo i e S s S o S s S S e Bt T e T s T . s s bty e o

O A sy it s T g O

{Maximum amount
jof time that

| Time elapsed
}|since the cur-

i T s, S s, S . S

jthis user can bejrent user task
jconnected to the|was logged on;

jsystem from a
jterminal; pre-
|sented in the
}form hhh.mm.ss,
jwhere hhh i3 in
jhours, mm is in
| minutes, and ss
{is in seconds.

o s v s o e

|presented in the|statistic was last
|form hhh.mr.ss,
|where hhh is in {in the form hhh.mrm.
|hours, mm is in |ss, where hhh is in
jminutes, and ss |hours, mm is in

]is in seconds.

e e i S e S s

T

}|Sum of the current
jtimes of each ter-

jminal session since
{this accumulative

|set to 0; presented

jminutes, and ss is
}in seconds; com-
jpared to the max-
}imum amount of the
connected time in
jthe ration to see
|if the user has ex-
|ceeded his limit.

) &

bt s e S s P e o T —— — ST s " arin SV atonn

Appendix H:

Key to Values Displayed by USAGE Command 303

APPENLCIX I: PL/I COMPILER OPTIONS

The PLIOPT cperand of the FLI command specifies a list of PL/I options
to be used by the compiler. The list of compiler ortions following the
equal sign in the PLIOET operand must be enclosed in parentheses unless
only one value is given. Each option must be separated ky commas. For
an option that includes a numeric specificaticn (fcr example, SIZE or
LINECNT), cnly significant digits need be specified. Futhermore, for an
option that includes more than one numeric specification (for exanple,
SCRMGIN), the numbers must be enclosed in parentheses and separated by
commas .

There is no required order for specifying the compiler options, but if
conflicting options are specified, the last specification in the 1list is
used. A brief explanation of the compiler options follows. This infor-
mation is summarized in Table 31. The standard defaults are shown in
the table, but you can specify an alternative. BAdditional informaticn
appears in PL/I Programmer's Guide.

Table 31. Formats of compiler options, abbreviations, and standard

defaults

— k] v ¥ 1
| | | Aobreviated | Standard |
| category |} Compiler Option Format i Name | Default |
b + . $ -

| control | OPT=n | © | 01 |
| options | STMT|NOSTMT | ST|NST | NOSIMT |
| | OBJNM=aaaaaaaa | N | None }
i | SYNCHKT|SYNCHKS | SYNCHKE | SKT|SKS|SKE | SYNCHKS |
|] } | SYNCHKE |
b e Bt $o— e
| Preprocessor | MACRO|NOMACRO | M{NM | NOMACRO |
| options | COMP]|NCCCMP | cinc | comp i
i | MACDCK| NCMACDCK | MDjNMC | NOMACDCK |
F - + — 1 pom— -

| Input | CHAR60Q|CHARHUS] ceojcus | CHAR60 |
| options | BCD| EBCDIC | BJEB | EBCDIC l
| | SORMGIN= (mmm,nnn, {cccl) | sM | (1,100) |
- } e I -~ } 1
| Output | LOAD|NOLOAD | LD}NLD | LOAD |
| options | DECK| NODECK] DiND | NODECK |
b= -t - } % :
| Listing | LINECNT=xXX | 1LC | 50 | | |
| options | OPLIST|NCOPLIST | OL]NOL | OPLIST |
| | SOURCE?2|NOSOURCE?2 | S2|Ns2 | SOURCE2 |
| | SOURCE | NOSOURCE | sins | SOURCE |
i | NEST| NONEST | NT|NNT | NONEST |
l | ATR |NOATR | AINA | NOATR i
i | XREF| NOXREF | XiNX | NOXREF |
| | EXTREF| NOEXTREF | E|NE | NCEXTREF |
i | LIST|NCLIST | LINL | NOLIST |
i | FLAGW|FLAGE|FLAGS | FW|FE|FS | FLAGW |
b + —+ + {
| Dummy | SIZE=yyyyyy|yyyK|999999 |MAX | SIZE | MAX }
| options | OBJIN|OBJOUT* | OBJIN|OBJOUT| OBJOUT |
i | EXTDIC/NOEXTDIC | ED|NED | ED 1
}_v 1 L L %
| *Note: Formerly referred to as M91/NOMS1 }
i

304

CONTROL OPTIONS

control options establish the conditions for compilation.
OPT: This obtion specifies the type of optimization required:

OFT=0
instructs the compiler to keep object-program storage requirerents
to a minimum at the expense of object-program execution time.

OFT=1
causes object-program execution time to ke reduced at the expense
of storage.

OPT=2
has the same effect as OPT=1, but in addition requests the compiler
to optimize the machine instructions generated for certain types of
DO loops and expressions in subscript lists. IBM TSS: PLs/I Lan-
guage Reference Manual includes a discussicn of DO loop and
subscript-expression optimization.

There is little difference in compilation time for optimization levels 0
and 1, but specifying OPT=2 can increase compilation tine.

STMT or NOSTMT: This option requests the comriler to produce additional
instructions that allow statement numbers from the source program to be
included in diagnostic messages produced during execution of the com-
piled program. The use of this option increases execution time. Howev=
er, you can get information about statement numbers and their associateéd
offsets by referring to the table of offsets in the listing.

OBJNM: This option has meaning only in a *PROCESS statement. When the
PL1 command is executed this option is ignored and the valu~ is taken
from the NAME parameter. The OBJNM option allows you to specify a name
(from one to eight alphameric characters) for successive compilations in
a batched compilation.

SYNCHKT or SYNCHKS or SYNCHKE: These ortions allow the user to control
the operation of the PL/I compiler when errors are encountered in the
"Dictionary" phase of compilation. The effect of each option is as
follows:

®* SYNCHKT overrides the system default. There is nc prompting.

® SYNCHKS causes prompting in conversational node or termination in
nonconversational mode when errors of severity SEVERE are found.

* SYNCHKE causes prompting in conversational mode or termination in
nonconversational mode when errors of severity SEVERE or ERROR are
found.

The system defaults are SYNCHKS in conversational mode; SYNCHKE in non-
conver sational mode.

PREPROCESSCR OPTIONS

Preprocessor options request the services of the preprocessor and speci-
fy how its output is to be handled.

MPCRO or NCMACRO: Specify MACRO when you want to employ the compiler
preprocesscr.

COMP or NONCOMP: Specify CCMP if you want the PL/I source module pro-
duced by the preprocessor compiled immediately. The source module is

Appendix I: PL/I Compiler Options 305

then read by the compiler from the data set identified Ly the DDNANME
PLIMAC.

MACDCK or NOMACDCK: Specify MACDCK if you want to save the intermediate
macro file that has the DDNAME of FLIMAC. NOMACLCK causes the file to
be erased after compilation is ocomplete.

INPUT OPTIONS

Input options specify the format of the input to the compiler.

CHAR60 or CHARU48: If the PL/I source statements are written in the PL/I
60-character set, specify CHAR60; if they are written in the 48-
character set, specify CHAR48. IBM Time Sharing System: PL/I lLanquage
Reference Manual lists koth character sets. (The compiler accepts
source programs written in either character set if you specify CHARU4S.
However, use of CHARU48 is inefficient.)

BCD or EBCDIC: The compiler accepts source statements in which the
characters are represented by either binary coded decimal (BCD) or ex-
tended binary coded decimal interchange code (EBCLIC). Whenever possi-
ble, use EECDIC since BCD requires translation and is less efficient.
(see PL/I Language Reference Manual for the EBCDIC representation of
both the 48-character set and the 60-character set.)

-SORMGIN: This option specifies the extent of the part of each input
record that contains the PL/I source statements. (SORMGIN represents
source margin.) The compiler does not process data that is outside
these limits. The option can also specify the positicn in the record of
a FORTRAN control character. This character is used to format the list-
ing of source statements produced ky the compiler if you include the
SOURCE option. The format of SORMGIN is:

SORMGIN=(nmw,nnnl,cccl)

whefe, .
nrnw represents the numker of the first byte of the field that con-
tains the source statements

nnn represents the number of the last byte of the source statement
field

ccc rerresents the number of the byte that will contain the control
character

The value nmmm must be less than or equal to nnn, and neither must exceed
100. The value ccc must be outside the limits set by mmm and nan. The
valid FORTRAN control characters are:

blank Skip one line kefore printing
0 Skip two lines before printing
- Skip three lines before printing
+ Suppress space before printing

1 Start new page

The carriage control character can be ignored by specifying zero. 2Zero
is the system default.

QUTPUT OPTIONS

Output options specify the type of data set that will contain the object
module.

306

LOAD or NOLOAD: Specifying LOAD invokes the same action as the DECK
option, but in addition the load data set will be presented to the
object dataset converter (CDC), which produces an executakle module.

Note that the load data set is created as a data generation set of depth
one. Each time the program is recompiled, the last data set is erased
and replaced with the one currently being generated.

DECK or NOLECK: Specifying DECK causes the compiler to put the object
code, in card image form, into a data set called LOAD.xxx(0), where xxx
is the object module name. This option should ke ccnsidered in conjunc-
tion with the LOAD or NOLCAD option.

LISTING OPTIONS

Listing options specify the information to be included in the compiler
listing.

LINECNT: 'This option specifies the number of lines to be included in
each page cf a printed listing, including heading lines and blank lines.
Three decimal digits are used.

OPLIST or NOOPLIST: This option requests a list showing the status of
all the cormpiler options at the start of compilation.

SOURCE2 or NOSOURCE2: Specify SOURCE2 if you want a listing of the PL/I
source statements input to the preprocessor.

SOURCE or NOSOURCE: Specify SOURCE if you want a listing of the PL/I
source statements processed by the compiler. The source statements
listed are either those of the original source program or the output
from the preprocessor.

NEST or NONEST: Specify NEST if you want the source program listing to
indicate, for each statement, the klock level and the level of nesting
of a DO grcup.

ATR or NOATR: Specify ATR if you want included in the listing a table
of source program identifiers and their attrikutes. Attributes with a
precision of fixed binary (15.0) or less are flagged *#****%%%2°, An
aggregate length table, giving the length in bytes of all major struc-
tures and nonstructured arrays in the source program, is also produced
when the ATR option is specified.

XREF or NOXREF: Specify XREF if you want included in the listing a
cross-reference table that lists all the identifiers in the source pro-
gram with the numbers of the source statements in which they appear. If
you specify ATR and XREF, the two tables are corbined. An Aggregate
Length Table is also produced when the XREF option is specified.

EXTREF or NOEXTREF: Specify EXTREF if you want a listing of the exter-
nal symbol dictionary (ESD).

LIST or NOLIST: Specify LIST if you want the machine instructiomns
generated by the compiler (in a form similar to 0S, 0S/VS assembler lan-
guage instructions).

PLAGW or FLAGE or FLAGS: Messages are listed in order of their occur-
rence on the user’s terminal and in order of their severity in the out-
put listing. There are four classes of diagnostic messages, which are
graded in order of severity:

A warning is a message that calls attention to a possible error,
although the statement to which it refers is syntactically valid. 1In

Iy

Appendix I: PL/I Compiler Options 307

addition to alerting you, it may assist in writing more efficient pro-
grams in the future.

An error message describes an attempt to correct an errcneous statement;
you are informed of the correction. Errors do not normally terminate
processing of the text.

A severe error message indicates an error that cannot be corrected by
the compiler. The incorrect section of the program is deleted, but com-
pilation is continued. Where reasonable, the ERROR condition is rade
known when the object module is executed, if execution of an incorrect
source statement is attempted. If a severe error occurs during compila-
tion, compilation is terminated after the SOURCE listing is produced.

A terminal error message describes an error that, when discovered, for-
ces the termination of the compilation.

You can select the severity at and above which diagnostic messages
appear on the output listing. The meaning of each option is as follows:

FLAGW -~ list all diagnostic messages
FLAGE -- list all diagnostic messages except warning messages

FLAGS -- list only severe errors and termination errors

DUMMY OPTIONS

Dummy options are included solely to give compatability with the PL/I
(F) Compiler.

Size: This option is used in the PL/I (F) compiler to specify the a-
mount of main storage available. The option has no effect in TSS PL/I
and is included to give compatakility with PL/I. Since there is a
standard default built into the compiler, you need never take account of
this option.

M91 or NOM91: This option is used to indicate if the machine is a Model
91. It is included for the same reasons as given above for SIZE.

EXTDIC or NOEXTDIC: This option is ignored, since the TSS PL/I compiler
always takes the EXTDIC option.

308

APPENDIX J: COBOL/VS COMPILER CPTICNS

This appendix lists and defines the COBOL/VS Compiler Options.

SIZE=YYYYYYY .
indicates the amount of main storage, in bytes, available for

compilation.

BUF=YYYYYY
indicates the amount of main storage to be allocated to buffers.

If both SIZE and BUF are specified, the amount allocated to buffers
is included in the amount of main storage available for
compilation.

Note: The SIZE and BUF compile-tine parameters can be given in mul-
tiples of K, where K=1024 decimal kytes. For example, 131,072 decimal
bytes can ke specified as 128K.

SOURCE| NOSOURCE
indicates whether or not the source module is to be listed.

CLIST |NOLIST
indicates whether or not a condensed listing is to be produced. If
specified, the procedure portion of the listing will contain
generated card numbers (unless the NUM option is in effect), verb
references, and the location of the first instruction generated for
each verb. Global tatles, literal pools, register assignments, and
information about the working-storage section are also provided.
CLIST and PMAP are mutually exclusive options.

Note: In nonsegmented programs, verbs are listed in source order. in
segmented programs, the root segment is last. (For programs run with
the OPTIMIZE option the root segment is first, followed by the individu-
al segments in order of ascending priority.)

DMAP| NODMAP
indicates whether or not a glossary is to be listed. Global
tables, literal pcols, register assignments, and information about
the working-storage section are also provided.

PMAP| NOPMAP
indicates whether or not register assignments, glokal tables, lit-
eral pools, information about the working-storage section, and an
assembler-language expansion of the source modules are to be
listed. CLIST and FMAP are mutually exclusive ortionms.

dote: If any one of the options CLIST, DMAP, and PMAP is specified, the
compi ler will produce a message giving the hexadecimal length and start-
ing address of the working-storage section.

VERB| NOVERB
indicates whether procedure-names and verb-names are to be listed
with the associated code on the object-program listing. VERE has
meaning only if PMAP or CLIST is in effect. NOVERE yields more
efficient compilation.

LOAD| NOLOAD

indicates whether or not the object module is to be written to a
dataset named PUNCH.module.

appendix J: COBOL/VS Compiler Options 309

DECK| NODECK
indicates whether or not the object module is to be written to a
LOAD .module. This option is required if the module is to be con-
verted by the object deck converter to a TSS loadable module.

SEQ |NOSEQ
indicates whether or not the compiler is to check the sequence of
the source module statements. If the statements are not in
sequence, a message is printed.

LINECNT=nn
indicates the number of lines to be printed on each page of the
compilation source card listing. The number specified by nn must
be a 2-digit inmteger from 01 to 99. If the LINECNT optiomn is
omitted, 60 lines are printed on each page of the output listing.

Note: The compiler allows for headings three lines less than the user
nas specified. (For example, if nn=55 is specified, then 52 lines are
printed on each page of the output listing.)

ZWB | NOZWB

indicates whether or not the compiler generates code to strip the
sign from a signed external decimal field when comparing this field
to an alphanumeric field. If ZWB is specified, the signed external
decimal field is moved to an intermediate field, in which its sign
is removed, before it is compared to the alphanumeric field. ZWB
complies with the ANS standard; NOZWB shcould be used when, for ex-
ample, input numeric fields are ©o be compared with SPACES.

LVI=A/B/C/LC|NOLVL
specifies what level of FIPS (federal Information Processing Stand-
ard) flagging is to ke used. If flagging is specified, source
clauses and statements that do not conform to the specified level
of FIPS are identified. See the publication IEM OS Full American
National Standard COBCL for a complete list of the statements
flagged at each level.

Note: If IVL is the default, its assigned value can be overridden at
compile time with any level except NOLVL. If NOLVL is the SYSGEN
default, it can be overridden at compile time with any level. If the
LVL option is in effect, the SYSUT6 dataset must be specified. If both
LVL=A/B/C/LC and TERM are specified, the compiler listing output for
options such as SOURCE, PMAP, and XREF are not produced.

FLAGW | FLAGE
indicates the type of messages that are to be listed for the compi-
lation. FLAGW indicates that all warning and diagncstic mesSages
are tc be listed. FLAGE indicates that all diagnostic messages are
to be listed, but that the warning messages are not to be 1listed.

SUPMAP| NOSUPMAP
indicates whether or not the object code listing, and object module
and link edit decks are to be suppressed if an E-level or D-level
ressayge is generated ky the ccompiler.

SPACE1 | SPACE2 | SPACE3
indicates the type of spacing that is to be used on the source card
listing generated when SCURCE is specified. SPACE1l specifies
single spacing, SPACE2 specifies double spacing, and SPACE3 speci-
fies triple spacing.

TRUNC | NOTRUNC
applies to movement of CCMPUTATIONAL arithretic fields. If TRUNC
(standard truncation) is specified and the number of digits in the
sending field is greater than the number of digits in the receivineg

310

field, the arithmetic item is truncated to the number of digits
specified in the PICTURE clause of the receiving field when moved.
if NOTRUNC is specified, movement of the item is dependent on the
size of the field (halfword, fullword).

QUOTE|APOST

indicates to the compiler that either the double quote(") or the
apostropne (') 1is acceptakle as the character to delineate literals
and to use that character in the generation of figurative
constants.

STATE | NOSTATE
indicates whether or not the number of the COEOL statement being
executed at the time of an abnormal termination is desired. STATE
jdentifies the numkex of the statement and the number of the verk
being executed.

SYMDMP | NOSYMDMP
requests a formatted dump of the data area of the okject program at
abnormal termination. With this option, the programmer may request
dynamic dumps of specified data-names at strategic points during
proygram execution.

Notes: If the SYMDMP option is in effect, the SYSUT5 data set must be
filedeffed. If the BATCH option is requested, symbolic debugging is
rejected. Specification of the SYMDMP option automatically yields the
OPTIMIZE feature, discussed below, and rejects the STATE option because
SYMDMP output includes STATE output at abnormal termination.

OPTIMIZE|NOOPTIMIZE
causes optimized object code to be generated by the compiler, con-
siderably reducing the use of object program main storage. In gen-
eral, the greater the number of COROL Procedure Pivision source
staterents, the greater the percentage of reduction in the amount
of main storage required.

Note The optimizer feature is autoratically in effect when the SYMDMP
feature is specified.

SYNTAX| NOSYNTAX

CSYNTAX|NOCSYNTAX
indicates whether the source text is to be scanned for syntax
errors only and appropriate error message are to be generated. For
conditional syntax checking (CSYNTAX), a full compilation is pro-
duced so long as no messages exceed the W or C level. If one or
more e-level or higher severity messages are produced, tle compiler
generates the messages but does not generate object text.

Notes :

1. When the SYNTAX option is in effect, all of the following compile-
time options are suppressed:

LOAD DECK NAME
XREF SYMDKP COUNT
SXREF TRUNC VBSUM
CLIST OPTIMIZE VBREF
NCSUPMAP PMAP STATE

2. Unconditional syntax checking is assumed if all of the following
compile-time options are specified:

NOLOAD NOCLIST SUPMAP
NOXREF NOPMAP NODECK
NOSXREF

appendix J: COBCL/VS Compiler Options 311

3. CSYNTAX and SYNTAX are mutually exclusive. CSYNTAX will override
SYNIAX.

NUM | NONUM
indicates whether or not line numbers have been recorded in the
input and, rather than compiler-generated source numbers, should be
used in error messages, as well as in PMAP, CLIST, STATE, XREF,
SXREF, and FLOW. NONUM indicates that the compiler-generated num-
bers should be used in error wessages as well as in PMAP, CLIST,
STATE, XREF, and SXREF.

XREF | NOXREF
indicates whether or not a wxross-reference listing is produced. If
XREF is specified, an unsorted listing is produced with data-namet
and procedure-names appearing in two parts in source order.

SXREF | NOSXREF
indicates whether or not a sorted cross-reference listing is pro-
duced. if SXREF is specified, a sorted listing is produced with
data-names and procedure-names in alpbanumeric order.

Note: XREF and SXREF are mutually exclusive.

LIB|NOLIB
indicates whether or not & COPY andfor a BASIS request will be part
of the COBOL sourxce input stream. If no library facilities are to
be used, the specification of WOLIE will save compilation time.

BATCH | NOBATCH A .
indicates whether or not multiple programs and/or subprograms are
to be compiled with a single imvocation of the compiler.

NAME | NONAME ‘
indicates whether or not progrems in a multiple compilation
environment will be combined into one or more load modules. If
NAME is specified, each succeeding program will be put into a
separate load wodule. this option will remain in effect for the
entire compilation unless WONAME is specified for an individual
program. Names for the load modules will be formed according to
the rules for forming module names from the PROGRAM-ID.

Note: If the BATCE option is not specified, NONAMF will be in effect.

RESIDENT | NORESIDENT
requests the COBOL Likrary Management feature. When one program in
a given region/partition reguests the RESIDENT option, the main
program and all subprograms in that retion/partition should also
request it.

Note: The RESIDENT option is automatically in effect when the DYNAM
option is invoked.

DYNAM | NODYNAM
causes subprograms invoked thwough the CALL literal statement to be
dynamically loaded and through the CANCEL statement to be dynamic-
ally deleted at object time (instead of link-edited with the call-
ing program into a single load module).

Note: When both NORESIDENT and ROLYMAM are either specified or iwmplied
by default, and a CALL identifier statement occurs in the source state-
ment being compiled, the COBOL Librayy Managemen FACILITY OPTION (RESI-
DENT) is automatically in effect. & printed stacement of this is given
in the compiler ocutput. .

312

SYST|SYSx
indicates whether SYSOUT of SYSOUx, where x must ke alphanumeric
(that is, 0-9 or a-z except for t), is the ddname of the file to be
used for debug output (READY TRACE, EXHIBIT) or DISPLAY statement.
The specification in the program that is first to access the file
is chosen.

ENDJOB| NCENDJOB
indicates whether or not, at the end of each job, COBOL library
subroutines are to be called to delete modules, free main storage
acquired through GETMAINS issued by the COBOL program or COBCL 1li-
brary subroutines, close DCBs opened by subroutines, and free their
associated buffers. Specifying ENDJOB prevents fragmentation of
main storage for programs executed on the system after the COBOL
program. This option takes effect at a STOP RUN statement in any
program and at a GOBACK statement in a main program only.

ADV | NOADV
indicates whether or not records for files with WRITE...ADVARCING
need reserve the first kyte for the contrcl character. ADV speci-
fies that the first Lyte need not be reserved.

COUNT | NOCOUNT
indicates whether or not code is to be generated to produce verb
execution summaries at the end of problem program execution. Each
verb is identified by procedure-name and by statement number, and
the number of times it was used is indicated. 1In addition, the
percentage of verb execution for each verb with respect to the
execution of all verks is given. A summary of all executakle verks
used in a program and the numker of times they are executed is pro-
vided. COUNT implies VERB.

DUMP | NODUMP ;
specifies that an abnormal termination dump is to be produced in
the event of certain disaster level errors during compilation.
NODUMP specitfies that only an error nessage is to ke produced in
the event of these disaster level errors.

The dump produced will contain a four digit user completion code.
Have the following available before calling IBM for programming
support: source deck, control cards, and corpiler output.

VBSUM | NOVBSUNM
provides a brief summary of verbs used in the program and a count
of how often each verb was used. This ortion provides the user
with a quick search for specific types of statements. VBSUM
implies VERB.

VBREF | NOVBREF
provides a cross-reference of all verbs used in the program. This
option provides the proorammer with a gquick index to any verb used
in the program. VBREF implies VERE and VESUM.

Options for the Lister Feature

There are five compiler options for using the lister feature of the com-
piler. Note that either LSTONLY cor LSTCOMP must be selected for the
other four options to have meaning unless the BATCH option is specified.

LSTONLY | LSTCOMP|NOLST
indicates whether the lister feature is to be used. LSTCNLY speci-
fies that a reformatted listing is to be produced but that no com-
pilation is to occur. LSICOMP specifies that both a reformatted
listing is tc be produced and compilation is to cccur.

Appendix J: COBOL/VS Compiler Options 313

FDECK | NOFDECK

indicates whether a copy of the reformatted source program is to ke
written on the SYSPUNCH data set. Since LLECK has meaning only
with either LSTONLY or LSTCOMP, the lister output will be both a
reformatted listing and a reformatted deck.

CDECK | NOCDECK

indicates whether or not COPY statements are to be expanded into
COPY members in the SYSPUNCH output. The COPY memkers are to be
expanded in the reformatted deck requested through FLCECK. if CDECK
is specified with NOFDECK, only the expanded COPY statements are
produced.

LCCL1]LCCL2

indicates whether the Procedure Division part of the listing is to
be in single or double column format.

L120}L132

indicates whether the length of each line of the reformatted list-
ing is to be 120 or 132 characters long.

PRINT{ (*|dsname) } | NOPRI NT

indicates whether or not the program listing is to be suppressed,
placed on the output data set specified by dsname, or displayed at
the terminal. if PRINT is specified, the listing will incliude page
headings, line numbers of the statements in error, message identi-
fication numbers, severity levels. and message texts (as well as
any other output requested by SOURCE, CLIST, DMAP, PMAP, XREF, or
SXREF). If (*) is specified instead of data-set name, the printed
output is sent to the terminal. if PRINT alone is specified, a
listing data set is created on secondary storage and named accord-
ing to standard dataset naming conventions. NOPRINT specifies that
no listing is to be printed. if neither PRINT nor NCPRINT is spec-
ified and any one or more of the options SOURCE, ClIST, DMAP, XREF,
or PMAP are specified, PRINT is the default. Otherwise, NOPRINT is
the default.

TERM | NOTERM

314

indicates whether or not progress and diagnostic messages are to be
printed on the SYSTERM terminal data set. The severity level of
the messages may ke controlled by the FLAG option. If PRINT (%) is
specified, then NOTERM is the default, to ensure that messages
appear only once.

APPENDIX K: FORTRAN IV (H EXTENDED) COMPILER OPTIONS

Default options are indicated by an underscore and need never be speci-
fied explicitly. The default options shown are standard IEM defaults;
when the ccmpiler is installed, each installation may establish its own

set of default options.

Opticns may be coded in any order and may be separated ky klanks or com-
nas. As many as 100 characters may be coded.

SOURCE | NOSOURCE
indicates whether the source module listing is to be written. If

SOUKRCE is specified, the source listing is produced in the listing
dataset.

LINECOUNT (number)
indicates the maximum number of lines to be assigned per page of
the source listing. The number may be in the range 1 to 99. If
the option is omitted, the compiler assumes 60.

LIST|NOLIS1T
indicates whether the object module listing is to ke written. The
object module listing consists of statements written in psuedo-

assembler language format.

OBJECT | NOOBJECT
indicates whether the okject module (not the listing) is to ke

written.

DECK| NODECK
indicates whether the object module in card image form is to ke
prcduced. DECK is required to supply input to the object deck con-
verter to produce a TSS loadable module.

OPTIMIZE ({0{1}2}) | NOCPTIMIZE
indicates what optimizing level is to be in force. NOOPTIMIZE in-
dicates that no optimization is to be performed, and is equivalent
to the specification OPTIMIZE(O). OPTIMIZE(1) specifies that each
source module is to be treated by the comwpiler as a single program
loop and that the single loop is to be optimized with regard to
register allocation and branching. OPTIMIZE(2) specifies that each
source module is to be treated as a collection of program loops and
that each loop is to be optimized with regard to register alloca-
tion, branching, common expression elimination, and replacement of
redundant computations.

FORMAT | NOFORMAT
indicates whether a structured source module listing is to be writ-
ten. A structured source module listing indicates loop structures
and the logical continuity of a source program. This option is ef-
fective only when OPTIMIZE(2) is in effect.

GOSTMT | NOGOSTMT
inaicates whether internal sequence numbers (ISN) are to be
generated for the calling sequence to subroutines for a traceback
map. (a traceback map is a tool used in diagnosing execution

errors).
MAP | NOMAP

indicates whether a takle of names and statement labels used by the
source program is to be written to the listing dataset.

Appendix K: FORTRAN IV (H Extended) Compiler Options 315

XREF| NOXREF
indicates whether a cross referemnce listing of variakles and labels
used in the source program is to be written tc the listing dataset.
If XREF is specified, 1ISNs are genervated for each statement in
which a variable or label is used.

NAME (name)
indicates the name to ke given to the main source program. The
name may be from one to six characters. If NAME is not specified,
the ccmpiler assumes the name MAIN.

BCD|EBCDIC
indicates whether the source wodule is written in BCD (Binary Coded
Decimal) or EBCDIC {(Extended Binary Coded Cecimal Interchange
Code). If BCD and EBCDIC statements are intermixed in the source
module, BCD should be specified. BCL characters are not supported
by the compiler as print control charvacters or in literal data.
For example, the carriage control character to specify same line
printing,+, is specified as a 12-8-6 punch in EBCDIC and as a 12
nunch in BCD: the compiler recognizes only the EBCDIC ccde.
Therefore, programs keypunched in BCD should be carefully screened
for pctential erroxs before job submission.

SIZE(MAX|nnnnk)
indicates the amount of main storage to be allocated to the compi-

lation step. The symtol nnnnK represents the number, multiplied by
K (1024-bytes), to be allocated. 7The number may range from 160 to
99499,

If SIZE(MAX) is specified, or if the option is omitted, the compiler
uses all available storage in the environment in which it is operating.

AUTODBL (value)
calls the Automatic Precision Increase {API} facility and indicates
whether data items are to ke converted to higher precision. API
provides an automatic means of converting single precision floating
point calculations to double precision accuracy and double preci-
sicn calculations to extended precision accuracy. the AUTODEL
option indicates which particular data types are to pe converted.

If AUTODBL is omitted, no precision increase is performed.

ALC |NOALC
indicates whether data items are to be aligned on proper storage
boundaries. It is often used with the AUTODBL option to restore
proper storage boundaries when a conversion is performed.

ANSF | NCANSF
indicates whether the compiler is to recognize only those library
and built-in functions specified by the American National Standards
Institute, (ANS), or the entire range of functions specified by IEM
in the publication IBM FORTRAN IV LANGUAGE, Form No. GC28-6515.
If ANSF is specified, any function not supported by ANS is consid-
ered to be user-supplied.

FLAG(I) |FLAGE (E) | FLAG (S)
indicates the level of diagnostic messages to ke printed. FLAG(I)
indicates that information messages, warning messages (those
generating a return code of 4), error messag=>s (those generating a
return code of 8), and severe error messages (generating a return
code of 12 or higher), are to be printed. FLAG(E) indicates that
only error messages and Severe error messages are to be printed.
FLAG(S) indicates that only severe error messages are to be
printed.

316

DUMP| NODUMP
icates whether the contents of registers, storage, and files as-

sociated with the compiler are to be printed if an aknormal termi-
nation occurs. If DUMP is specified, a filedef statement named
SYSUDUMP or SYSABEND must be supplied.

Changing Program Options During Compilation

The programmer may compile more than one source module. To change the
options for any source module, the programmer precedes the source module
with a card containing the characters *PROCESS in columns 1 through 9
followed by the options up to column 72, which must be left blank and
which denotes the end of the *PROCESS card.

An example of the *PROCESS card is:
*PROCESS LIST,MAP

1f succeeding source modules are not preceded by a *PROCESS card,

options revert to those specified in the EXEC statement. Any option ex-
cept SIZE ray be specified on the *PROCESS card.

Appendix K: FORTRAN IV (H Extended) Compiler Optiomns 317

APPENDIX L: PL/I OPTIMIZING CCMPILER CPTICHNS

The compiler options are of the following types:

1. sSimple pairs of keywords: a positive form (for example, &EST)
that requests a facility, and an alternative negative form (for ex-
ample, NONEST) that rejects that facility.

2. Keywords that permit you to provide a value-list that quallfles
the ortion (for example, NOCOMPILE{E}}.

3. A combination of 1 and 2z above.

The following paragraphs descrike the options in alphabetic order .

AGGREGATE Option

The AGGREGATE option specifies that the compiler is to include in
the compiler listing an aggregate length table, giving the lengths
of all arrays and major structures in the source program.

ATTRIBUTES Option

The ATTRIBUTES option specifies that the compiler is to include in
the compiler listing a table of sourcz-program identifiers and
their attributes. If both ATTRIBUTES and XREF apply, the two
tables are combined.

CHARSET Option

The CHARSET option specifies the charactexr set and data code that
you have used to create the source program. The compiler will ac-
cept source programs written in the 60-character set or the 48-
character set, and in the Extended Binary Coded Cecimal Interchange
Code (EBCDIC or Binary Coded Decimal {(BCD).

60- or 48~ character Set: If the source program is written in the

60-character set, specify CHARSET {60); if it is written in the
48-character set, svecify CHARSET {48).

The language reference manual for this compiler lists both of these
character sets. (The compiler will accert sourxce programs written
in either character set if CHARSET {(48) is specified).

BCD or ERCDIC:If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCLIC, specify CHARSET (EBCD-
IC). The langquage reference wanual for this compiler lists the
EBCDIC representation of both the 48-~character set and the 60-
character set.

If ooth arguments (48 or 60, EBCDIC or BCD) are specified, they wmay
be in any order and should be separated by a blank or by a comrna.

COMPILE Option

318

The CCMPILE option specifies that the cowmpiler is to compile the
source program unless an unrecoverable error was detected during
preprocessing or syntax checkirmg. The NOCOMPILE option without an
argument causes processing to stop unconditionally after syntax
checking. With an argument, continuation depends on the severity
of errors detected so far, as follows

NOCOMPILE{(W) —--- NoO compilation if & warniny, €Yror, sever error
or unrecoverable error is detected.

NOCOMPILE(E) ---- No compilation if error, severe error,or unrecov-
erable error is detected.

NOCOMPILE(S) --- No compilation if a severe error or unrecoverarle
error is detected.

If the compilation is terminated by the NOCOMPILE option, the
cross-reference listing and attribute listing may be produced; the
other listings that follow the source progran will not be produced.

CONTROL Option

The CONTROL option specifies that any compiler options deleted for
your installation are to be available for this ccmpilation. You
must still specify the appropriate keywords to use the options.

The CONTROL option must be specified with a password that is estab-
lished for each installation; use of an incorrect rassword will
cause processing to be terminated. the CONTROL option, if used,
mist be specified first in the list of options. It has the format:

CONTROL("password?’)

where "password" is a character string, not exceeding eight
characters.

COUNT Option

DECK

buMP

The COUNT option specifies that the compiler i s to produce code to
enable the number of times each statement is executed to b e coun-
ted at execution time.

The COUNT option implies the GOSTMT option if the STMT option ap-
plies, or the GONUMBER option if the NUMBER option agplies.

Option

The DECK option specifies that the compiler is to produce an object
module in the form of 80-column card images and store it in the
data set defined by the DD statement with the name SYSPUNCH.
Columns 7376 of each card contain a code to identify the objcct
module; this code comprises the first four characters of the first
label in the external procedure represented by the object module.
Columns 77-80 contain a 4-digit decimal numberth e first card is
numbered 0001, the second 0002, and so on. This ortion is req
uired to produce a dataset to be converted to a TSS loadable
module.

Option .

The DUMP option specifies that the compiler is to produce a for-
matted dump of main s+*orage if the compi lation terminates abnormal-
ly (usually due to an I/0 error or compiler error). This dunp is
written on the data set associated with SYSPRINT.

ESD Option

FLAG

The ESD option specifies that the external symbol dictionary (ESD)
is to be listed in the compiler listing.

Option

The FLAG option specifies the minimum severity of error that re-
quires a message to be listed in the compiler listing:

FLAG(I) --- List all messages.

FLAG (W) --- List all except informatory messages. If you specify
FLAG, FLAG(W) is assumed.

FLAG(E) --- List all except warning and informatory messages.

Appendix L: PL/I Optimizing Compiler Options 319

FLAG (S) --- List only severe error and unrecoverable errxor
messages.

GONUMBER Option

The GCNUMBER option specifies that the cowpiler is to produce addi-
tional information that will allow line numbers from the source
program to be included in execution-time messages. Alternatively,
these line numbers can be derived by using the offset address,
which is always included in execution-tiwme messages, and the takle
produced by the OFFSET option. (the NUMBER option must also

apply.)

Use of the GONUMBER option implies NUMEER, NOSTMT, and NOGOSTMT.

GOSTIMT Option

The GOSTMT option specifies that the compiler is to produce addi-
tional information that will allow statement numbers from the
source program to be included in execution-time messages. Alterna-
tively, these statement nuwkers can be derived by using the offset
address, which is always included in execution-time messages, and
the table produced by the OFFSET option. (the STMT option must
also arply.)

Use of the GOSTMT, NOGONUMBER option implies STMT and nonumber.

INCLUDE Option

The INCLUDE option requests the compiler to handle the inclusion of
PL/I source statements for programs that use the %INCLUDF state-
ment. For programs that use the %INCLUDE statement but no other
PL/1 preprocessor statements, this method is faster than using .the
preprocessor. If the MACRO option is also specified, the INCLUDE
option has no effect.

INSOURCE Orption

The INSCURCE option specifies that the compiler is to 1nclude a

listing of the source program (including preprocessor statements)
in the compiler listing. This option is applicable only when the
preprocessor is used, therefore the MACRC option must also apply.

LINECOUNT Option

LIST

320

The LINECOUNT option specifies the number of lines to be included
in each page of the compiler listing, including heading lines and
blank lines. the format of the LINECOUNT option is:

LINECOUNT (n)

where "n* is the numker of lines. It must be in the range 1
through 32767, but only headings are generated if you specify less
than 7.

Option

The LIST option specifies that the compiler is to include a listing
of the object module {in a form similar to IBM assembler language
instructions) in the compiler listing. The format of the list
option is:

LIST{(mi{,n))]}

where "m" is the numkber of the first source statement for which an
object listing is required and "n" is the number of the last source
statement for which an ob]ect listing is regrired. If "n" is
omitted, only statement "m"™ is listed. If the option NUMBER appli-
es, "m* and "n" must be specified as line numbers.

LMESSAGE Option - -
The LMESSAGE and SMESSAGE options specify that the compiler is to
produce messages in a long form (specify LMESSAGE) or in a short
form (specify SMESSAGE).

MACRO Opticn '
The MACRO option specifies that the source program is to ke pro-
cessed by the preprocessor.

MAP Option
The MAP option specifies that the compiler is to produce tables
showing the organization of the static storage for the object
module. These tables consist of a static internal storage map and
the static external control sections. The MAP option is normally
used with the LIST option.

MARGINI Option
The MARGINI option specifies that the compiler is to include a
specified character in the column preceding the left-hand margin,
and in the column following the right-hand margin of the listings
resulting from the INSOURCE and SOURCE ortions. Any text in the
source input which precedes the left-hand margin will be shifted
left one column, and any text that follows the right-hand margin
will be shifted right one column. For variable-length input rec-
ords that do not extend as far as the right-hand margin, the
character is inserted in the column following the end of the rec-
ord. Thus text outside the source margins can be easily detected.

the MARGINI option has the format:
MARGINI("c*')
where "c" is the character to be printed as the margin indicator.

MARGINS Option
The MARGINS option specifies the extent of the part of each input
line or record that contains PL/1 statements. The compiler will
not process data that is outside these limits (but it will include
it in the source listings).

The option can also specify the position of an American National
Standard (ANS) printer control character to format the listing pro-
duced if the SOURCE option applies. This is an alternative to
using %PAGE and %SKIP statements (described in the language reier-
ence manual for this compiler). If you do not use either method,
the input records will be listed without any intervening blank
lines. the format of the MARGINS optiocn is:

MARGINS(m,nicl)

where "m™ is the column number of the left-hand margin. It should
not exceed 100.

n" is the column number of the right-hand margin. It should be
greater than m, but not greater than 100.

"c" is the column number of the ANS printer control characters. It
should not exceed 100 and should be cutside the values specified
for m and n. Only the following control characters can te used:

{blank) skip one line before printing.
0 skip two lines before printing.

- skip three lines kefore printing.

+ no skip before printing.

1 start new page.

Appendix L: PL/I1 Optimizing Compiler Options 321

The standard IBM-supplied default for fixed-length records is MAR-
GINS (2,72,0); that for variakle-length and undefined-length rec-
ords is MARGINS (10,100,0). A zero value for "c® specifies that
there is no printer control character.

MDECK Option
The MDECK option specifies that the preprocessor is to produce a
copy of its output (see MACRC option) and store it in the data set
defined by SYSPUNCH, the load.module dataset. The last four Ltytes
of each record in SYSUT1 are not copied, thus this option allows
you to retain the output from the preprocessor as a deck of 80-
cclumn punched cards.

NAME Opticn
The NAME option specifies that the compiler is tc place a NANME
statement as the last statement of the object module. When pro-
cessed by the object deck converter, this NAME statement indicates
that primary input is complete and causes the specified name to be
assigned to the load wmodule created from the preceding input {(since
the last NAME statement).

It is required if you want the cbject deck converter to create more
than one load module from the cbject modules produced by batched
compilation.

If you do not use this option, ths object deck converter will use
the module name specified in the coamand. the format of the NAME
option is:

NAME(*name’)

where name has from one through eight characters, and begins with
an alphabetic character.

NEST Option
the NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the block level
and the do-group level.

NUMBER option
The NUMBER option specifies that the numbers specified in the
sequence fields in the source input records are to be used to
derive the statement numbers in the listings resulting from the
AGGREGATE, ATTRIBUTES, LIST, CFFSET, SOURCE and XREF options.

If NONUWMBER is specified, STHMT and NOGONUMEER are implied. NUMBER
is implied by NOSTMT or GONUMBER.

The position of the sequence field can be specified in the SEQUENCE
option. Alternatively the following default positions are assumed:

First 8 columns for undefined-length or variable-length source
input records. In this case, 8 is added to the values used in the
MARGINS option.

Last 8 cclumns for fixed-length source input records.
Note: The preprocessor output has fixed-length records irrespective of

the original primary input. Any sequence numkers in the primary input
are repositioned in columns 73-80.,

The line number is calculated from the five right-hand characters of the
sequence number {(or the number specified, if less than five). These
characters are converted to decimal digits if necwuisary. Each time a
sequence number is found that is not greater tha: the preceding line

322

number, a new line number is formed by adding the rinimum integral mui-
tiple of 100,000 necessary to produce a line number that is greater than
the preceding one. If the sequence field consists only of blanks, the
new line number is formed by adding 10 to the preceding one. The maxi-
mum line number permitted by the compiler is 134,000,000; numbers that
would normally exceed this are set to this maximum value. Only eight
digits are printed in the source listing; line numbers of 100,000,000 or
over will be printed without the leading "1% digit.

If there is more than one statement on a line, a suffix is used to iden-
tify the actual statement in the messages. For example, the second
statement beginning on the line nurmbered 40 will be identified by the
number 40.2. The maximum value for this suffix is 31. Thus the thirty-
first and subsequent statements on a line have the same number.

OBJECT Option
The OBJECT option specifies that the comriler is to store the
object module that it creates in the data set defined by the ddname
SYSLIN called punch.module.

OFFSET Option
The OFFSET option specifies that the compiler is to print a table
of statement or line numbers for each procedure with their offset
addresses relative to the primary entry point of the procedure.
This information is of use in identifying the statement being
executed when an error occurs and a listing of the okject module
(obtained by using the LIST option) is available. if GOSTMT appli-
es, statement numbers, as well as offset addresses, will be includ-
ed in execution-time messages. if GONUMBER applies, line nunbers,
as well as offset addresses, will be included in execution-time
messages .

OPTIMIZE Option
The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE -- specifies fast compilation speed, but inhibits opti-
mization for faster execution and reduced main storage
requirements.

OPTIMIZE (TIME) -- specifies that the compiler is to optimize the
machine instructions generated to produce a very efficient object
program. A secondary effect of this type of optimization can be a
reduction in the amount of main storage required for the object
module. The use of CETIMIZE (TIME) could result in a substantial
increase in compile time over NCOPTIMIZE.

OPTIMIZE(O) -- is the eguivalent of NOOPTIMIZE.
OPTIMIZE{(2) -~ IS THE EQUIVALENT OF OPTIMIZE (TIME).

The language reference manual for this compiler includes a full
discus sion of optimization. ‘

OPTIONS Option
The OPTIONS option specifies that the compiler is tc include in the
compiler listing, a list showing the compiler options, to be used
during this compilation.

SEQUENCE Option
The SEQUENCE option specifies the extent of the part of each input
line or record that contains a sequence nurber. This number is in-
cluded in the source listings produced by the INSOURCE and SOURCE
option. Also, if the NUMBER option applies, line numbers will ke
derived from these sequence numbers and will be included in the
source listing in place of statement numbers. No attempt is made

Appendix L: PL/I Optimizing Compiler Options 323

SIZE

to sort the input lines or records into the specified sequence.
The SEQUENCE option has the format:

SEQUENCE (m,n)

where "m" specifies the column number of the left-hand margin.
where "n" specifies the column number of the right-hand margin.

The extent speified should not overlap with the source program (as
spe cified in the MARGINS option).

Option

This option can be used to limit the amount of main storage used by
the ccmpiler. This is of value, for example, when dynamically
invoking the compiler, to ensure that space is left for other pur-
poses. The SIZE option can be expressed in five forms:

SIZE (YYYYYYYY) -~ specifies that YYYYYYYY bytes of main storage are
to be requested. leading zeros are not required.

SIZE(YYYYYK) -- specifies that YYYYYK bytes of main storage are to
be requested (1K=1024). Leading zeros are not required.

SIZE(~-YYYYYY) -- specifies that the compiler is to oktain as much
rain storage as it can, and then release YYYYYY bytes to the oper-
ating system. Leading zeros are not required.

SIZE(-YYYK) -~ specifies that the compilexr is to oktain as much
main storage as it can, and then release YYK bytes to the operating
system (1K=1024). Leading zeros are not required.

SIZE(MAX) -- specifies that the compiler is to obtain as much main
storage as it can.

The IBM default, and the most usual value to be used is SIZE (MaX),
which permits the compiler to use as much main storage in the par-
tition or region as it can.

When a limit is specified, the amount of main storage used by the
comp ilerdepends on how the operating system has been generated,
and the method used for storage allocaticn.The ccmpiler assures
that buffers, data management routines, and processing phases take
up a fixed amount of main storage, but this amount can vary unknown
to the compiler.

MESSAGE Option

See LMESSAGE option.

SOURCE Option

STMT

The SOURCE option specifies that the compiler is to include in the
compiler listing a listing of the source program. The source pro-
gram listed is either the original source input or, if the MACRC
option applies, the output fromr the preprocessor.

Option

The STMT option specifies that statements in the source program are
to be counted, and that this "statement number® is used to identify
Statements in the compiler listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options. STMT is
implied by NONUMBER or GOSTMI. If NOSTMT is specified, NUMBER and
NOGOSTMT are implied.

STORAGE Option

324

The STORAGE option specifies that the compiler is to include in

thecompiler listing a table giving the main storage requirements
for the object module.

SYNTAX Option L .) .
The SYNTAX option specifies that the compiler is to continue into

syntax checking after initialization {or after preprocessing if the
MACRO option applies) unless an unrecoverable error is detected.

The NOSYNTAX option without an argument causes processing to stop uncon-
ditionally after initialization (or preprocessing). With an argument,
continuation depends on the severity of errors detected sc far, as

follows:

NOSYNTAX (W) -- No syntax checking if a warning, error, severe
error, or unrecoverakle error is detected.

NOSYNTAX(E) ~- No syntax checking if an erxor, severe error, or
unrecoverable error is detected.

NOSYNTAX(S) -- No syntax checking if a severe error or unrecover-
able error is detected.

If the SOURCE option applies, the compiler will generate a source
listing even if syntax checking is not performed.

If the compilation is terminated by the NOSYNTAX ortion, the cross-
reference listing, attribute listing, and other listings that fol-
low the source program will not ke produced.

The use of this option can prevent wasted runs when debuggin a PL/I
program that uses the preprocessor.

TERMINAL Ortion
It specifies that some or all of the compiler listing produced dur-
ing ccmpilation is to be printed at the terminal. If TERMINAL is
specified without an argument, diagnostic and informatory messages
are printed at the terminal. You can add an argument, which takes
the form of an option list, to specify other parts of the compiler
listing that are to ke printed at the termwinal.

The listing at the terminal is independent of that written on
SYSPRINT.the following option keywords, their negative forms, or
their abbreviated torms, can ke specified in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OPTIONS, SOURCE,
STORAGE, and XREF.

The other options that relate to the listing (that is, FLAG,
GONUMBER, GOSTMT, LINECOUNT, LMESSAGE/SMESSAGE, MARGINI, NEST, and
NUMBER) will be the same as for the SYSPRINT listing.

XREF Option
The XREF option specifies that the compiler is to include in the
compiler listing a list of all identifiers used in the PL/I program
together with the mumkers of the statements in which they are
declared or referenced. Note that label references on END state-
ments are not included, reference lists for structures may be
incomplete, and arrays of structures are always listed with bounds
of (#). If both ATTRIBUTES and XREF apply, the two tables are
combined.

Appendix L: PL/I Optimizing Compiler Options 325

SPECIFYING EXECUTION-TIME OPTICKS

For each execution, the IBM or installation default for an execution-
time option will apply unless it is overridden by a PLIXOPT string in
the source program or by the PARM parameter of the OSRUN statement for
execution.

An option specified in the PLIXOPT string overrides the default value,
and an option specified in the PARM parameter overrides that specified
in the PLIXOPT string.

Specifying Execution-time Options in the PLIXOPT String

Execution-time options can be specified in a source program by means of
the following declaration:

DCL PLIXOPT CHAR (len) VAR INIT ('strng®) STATIC EXTERNAL;

where "strng” is a list of options separated by commas, and “len®
is a constant eqgual to or greater than the length of "strng".

If more than one external procedure in a job declares PLIXOPT as STATIC
EXTERNAL, only the first string will be link-edited and available at
execution time.

Specifying Execution-time Cptions in the OSRUN Command

You can also use the PARM field to pass an argument to the PL/I main
procedure. To do so, place the argument, preceded by a slash, after the
execution-time options. for example:

OSRUN OPT, 'ISASIZE (10K), REPORT/ARGUMENT

If you wish to pass an argument without specifying options, it must be
preceded by a slash. for example:

OSRUN OPT, PARM='/ARGUMENT®

EXECUTION-TIME OPTIONS

The following paragraphs describe the execution-time options, which can
be specified in the EXEC statement or in the PLIXOPT string.

COUNT
specifies that a count is to be kept of the number of times each
statement in the program is executed and that the results are to be
printed when the program terminates.

NOCOUNT
specifies that statement counting is not to be performed.

REPORT
specifies that a report of certain prograr management activity is
to be printed. The report will be automatically output to a data-
set with the ddname PLIDUMP or PL1DUMP on program termination.
This includes, for example, the amount of storage that was speci-
fied in the ISASIZE opticn, the length of the initial storage area,
and the amount of PL/I storage required. This option may be abbre-
viated to R. The use of the report is described in "execution-time
Storage Requirements®™, below.

NOREPORT

specifies that a report is not required. This option may be akkre-
viated to NR.

326

STAE
specifies that when an ABEND SVC, but not a TSS abend, occurs, the

PL/I library routines are to attempt to raise the ERROR condition
or to produce a diagnostic message and a PLILUMP.

NOSTAE
specifies that on program initialization, a STAE macro instruction
is not to be issued.

SPIE
specifies that when a program interrupt occurs, the PL/I error
handler is to be invoked. Under certain circumstances the ERRCR
condition will be raised.

NOSPIE
specifies that on program initialization, a SPIE macro instruction
is not to be issued. This option must not be used if extended pre-
cision variables are used in the PL/I source program.

The execution-time options are discussed in greater detail in the publi-
cation O0S PL/I Optimizing Compiler: Execution Logic.

appendix L: PL/I Optimizing Ccrpiler Options 327

INDEX

When more than one page reference is given, the

major reference is first. All references are within plus or

minus one of the indicated page numbers.

! (exclamation point, response to attention interrup-
tion) 13

3 (preceding dummy operand) 62
* (asterisk, response to attention interruption) 13
% (dynamic statement counter) 51

(PC command operand) 51

— (underscore response to attention interruption) 13

%COM 44

% CSECT and %COM 44
%END (end-of-data record) 16
%ENDDS card 263, 265

ABEND command 92,9, 14
ABENDREG command 92, 93, 9
abnormal termination 17, 93
absolute generation number, definition 7
absolute line number 22
ACC operand 266
CATALOG command (Form 1) 107
ACCESS operand 266
PERMIT command 206
ACTION operand 266
CATALOG command (Form 2) 107
address
constant 50
FORTRAN statement number 44
hexadecimal 47
specification 42
variable 44
alias 216
ALIAS operand 266
POD? command 215
Aliases and member names placard on SYSOUT
(POD? command) 216
ALPHABET implicit operand 266, 11, 90
C, CA, and CB commands 103
K, KA, and KB commands 178
apostrophe '
in character constant 49
in quoted string 23
arithmetic expression 53
arithmetic operator 53
array examples 45
assembler 93, 34
ASM command 93, 96, 34

328

ASMALIGH implicit operand 88, 94
ASMLIST operand 266
ASM command 93, 94
asterisk, response to attention interruption 13
AT command 97,98, 40
AT commands of dynamic statements, deleting
(REMOVE command) 231
attention interruption
interruption of language processing 36
interruption of privileged program 13
interruption of user program 13, 14, 36
levels of interruption 13
resume execution after 169, 14
save status after 226
systein response 13
user handling routine 14
attention interruption prevention switch (IPS) 13
attributes
of control sections 38
of data locations 51
of VAM data set, changing (RET command) 232

BACK command 98,99, 9, 18
BASE operand 266
EDIT command 148
REGION command 227
batch job, status of 158
batch sequence number (BSN) 16, 99, 106, 158
BCD operand 266
FTN command 166
BEGIN command 98,9
binary constant 51
BKPD macro instruction 102
BLIP command 100
BLIP? command 101
braces (notational symbol) 4
brackets (notational symbol) 4
BRANCH command 10t, 40
break characters
command system transient statement prefix
character 281
command system prompt character 19, 282
definition 19
entry in data set 19
text editor processing 19
user definition 193
BREVITY implicit operand 266, 90
BSN (see bztrh s2quence number)
BSN ope-ind 266
CANCEL command 106

BUILTIN command 102, 60

(see also object program definition)
bulk input

from card decks 263, 265

from magnetic tape 260, 261
butk I/O job, status of 158, 159
bulk ocutput

to cards 223,224

commands 33

to tape 247

C,CA, and CB commands 103, 12
call another object program 105
CALL command 104, 105, 28
calling operand

analysis of 71

defaults 72

nulls 73
specification of 71
synonyms 88

CANCEL command 106
canceling previous DDEF (RELEASE command) 229
card input 263
card punching of VSAM or VISAM data sets
(PUNCH command) 223, 224
carriage return suppression character 282
catalog
automatic 6, 107
create entry for
dataset 109
generation data group 109
generation member 109
volume 155
definition 6
delete entry for
private data sets 133
public data sets 153
shared data sets 133
index, creation of 109
present catalog 205
update entry 109
CATALOG command 107-111, 20
catalog entry, removal from user’s catalog (ERASE
command) 152
cataloged, definition 6
CDD command 111,20
CDS command 112,20
change characters (CORRECT command) 122
changing a data set (DISABLE, ENABLE, POST,
and STET commands) 134-140
changing attributes of VAM data set (RET command)
232

changing contents of data location (SET command) 236

changing control path of a program (BRANCH
command) 101
CHAR operand 266
CORRECT command 122
LIST command 182, 183
character constant 49
character set control (for SYSIN) 11
(see also, C, CA, CB commands and K, KA, KB
commands)
character strings 23
character switch table 281, 282
character translation tables 271, 280
CHGPASS command 116, 9, 296
CLEANUP implicit operand 266, 90
EXIT command 160
CLOSE command 117, 20
CLP (see current line pointer)
CLP operand 266
MCAST command 193
COBOL command 119
coded value 5
codes
message filter 81, 82
miscellaneous control codes 281
printer carriage 283
punch 284
translation character 269, 271
comma, use in command statement 2, 5
command creation commands 60
command execution, resuming 169
command format summary table 296, 301
command mode, return to userin 234
command name 2,241
command procedure, definition of 60
command procedure definition (PROCDEF
command) 222,60
calling 71
command creation 60
deletion 69
dummy operands 61, 62
editing 68
entering text 66, 63
examples 61-80
interruption 68-70
messages 70
nesting 65, 68
operand equivalences 74
operand resolution 69
procedure library 61
prompting 63
sharing 68
synonyms 88, 241

Index 329

termination 63, 151
command prompt string 282
command statement
command name 2
conditional (IF command) 3, 41
specification 175
continuation 10
dynamic (AT command) 3, 41
counter S1 '
specification 97
entering 3,11
execution 12
format
description 2
free-form 11
immediate 3, 41
invalid 12,17
renaming 242
request for next statement 11
resolution 12
series 3,12
system request for next 11
termination 11
user-written 60, 222
command symbols 44
command system break character 281
command system continuation character 281
commands, creation of 60
commands, renaming 241
comment 3
COMMON block name, FORTRAN 44
compiler
FORTRAN (FTN command) 164-168, 34
PL/I (PLI command) 208-212, 304, 308
compiler options, PL/I 304-308
concatenating input records 28
concatenation character 281
conditional execution (IF command) 175
conditional statement 3,41, 175
CONF operand 266
CONPRMT implicit operand 266, 90
UPDATE command 250
CONREC implicit operand 266, 90
UPDATE command 250

constants
address 50
binary S1

character 49
floating-point 50
hexadecimal 22, 50
integer 49

string 23

330

CONT operand 266

MCAST command 193
CONTEXT command 120, 121
continuatian eharacter 281
continuation line 11
control, return to user 234
control characters 281
control codes and characters 283, 284
control section

attributes 38

packing 191
conversational mode 10
conversational task

conversion to nonconversational task (BACK

command) 98

execution 10

initiation 10

output 15

termination 15
copy data set or members 112
COPYBASE operand 266

CDS command 112,113
COPYINCR operand 266

CDS command 112,113

copying VAM data set in storage (VV command) 254

copying VAM data set to tape 252
CORMARK operand 266

CORRECT command 122
CORRECT command 122-125
correction characters 122
counter, dynamic statement 51
CP operand 266

MCAST command 193

Creating a catalog index (CATALOG command) 107
creating user’s environment (LOGON command) 190

creating a VISAM data set or member (MODIFY
command) 197
CRLIST operand 266
ASM command 93-94
FTN command 164-165
CSW operand 266
PROFILE command 222
current line pointer (CLP) 266, 19
definition 19
displaying value of 182,22
positioning rules 295

DA operand

SECURE command 235
DATA command 126-130
DATA operand 267

POD? command 215

data-card data set 262
data definition name (DDNAME)

definition 6
listing (DDNAME? command) 131

data descriptor card 263
data editing commands 31,32
data field

definition of 52
to dump contents of 147
to print on SYSOUT 141

data location

to change contents of 236
definition 51

data management commands 20
DATASET 263
data set

automatic cataloging, VAM 6, 108
cataloging
data set (CATALOG command) 107
generation data group (CATALOG command) 107
volume (EVV command) 154
cataloged, status 145
closing (CLOSE command) 117
copying
data set (CDS command) 112
source/copy table 114
volume
tape to VAM (TV command) 247
VAM to tape (VT command) 252
VAM to VAM (VV) 254
creating
VISAM 21-33, 126,197
VPAM member 126, 197
VSAM 33,197
defining
atypical (DDEF command) 285-294
retrieve DDEF (CDD command) 111
typical public VAM (DDEF command) 129
deleting catalog entry
private or shared (DELETE comsaand) 133
public (ERASE command) 152
deleting data definition
(RELEASE command) 229
displaying lines of line data set
(LINE? command) 180
displaying lines of line or region data set
(LIST command) 182
editing
example 28
VISAM 21,32
VSAM 32

erasing
after copying (CDS command) 112
after printing (PRINT command) 21 8
after punching (PUNCH command) 223
after writing on tape (WT command) 256
VAM (ERASE command) 152
VISAM (EXCISE command) 156
executing, object code (EXECUTE command) 187
generation (see generation data set)
line (see line data set)
listing names and aliases of VPAM members
(POD? command) 215
member
(see VPAM member)
modifying VISAM 21-33
(EXCERPT command) 154
(EXCISE command) 156
(INSERT command) 176
(MODIFY command) 197
(UPDATE command) 250
organization 129
partitioned (see VPAM member)
presenting name and access (PC? command) 205
presenting status (DSS? command) 145
printing BSAM, VSAM or VISAM {PRINT
command) 218
punching VISAM or VSAM (PUNCH command) 223
region (see region data set)
renaming 107
renumbering lines, VISAM (NUMBER command)
202
sharing
(PERMIT command) 206
(SHARE command) 237
source language (see source program module)
system
DDVTIOUT 253
PCSOUT 147, 285
SYSIN 11, 15,262
SYSLIB 61,88
SYSOUT 15-17
TSKABEND 18
USERLIB (see USERLIB data set)
writing VISAM or VSAM on tape
(WT command) 256

data set name (DSNAME)

definition 6
listing (DDNAME? command) 131

data set sharing (SHARE command) 237
DBASE operand 267

DATA command 126

DCB operand 267

Index 331

DDEF command 285 BACK command 98

DDEF cancellation (RELEASE command) 229 CATALOG command (Form 1) 107
DDEF command 129, 130, 285-294 CDD command 111
creating typical data sets 285-294 CLOSE command 117
creating typical public VAM data sets 129, 130 DATA command 126
DDNAME operand 267 DDEF command 129-131, 285-294
CLOSE command 117 DELETE command 133
DDEF command 129, 285 EDIT command 148
JOBLIBS command 178 ERASE command 152
RELEASE command 229 EXCERPT command 154
DDNAME? command 131 EXECUTE command 157
DDVTOUT dataset 253 LINE? command 180
DEFAULT command 132 PERMIT command 206
default value PRINT command 218
(see also the specific operand) 266-269 PUNCH command 223
system-supplied commands 6, 13, 266 RELEASE command 229
user-written commands 70, 88 RET command 232
default values, changing operand (DEFAULT SHARE command 237
command) 132 WT command 256
defined (data set), definition 7 DSNAME1 operand 267
defining a command procedure (PROCDEF CDS command 112
command) 222 TV command 247
defining and describing a data set (DPEF command) VT command 252
129, 285 VV command 254
DELETE command 133, 129, 285 DSNAME? operand 267
deleting AT commands (REMOVE command) 231 CDS command 112
deleting data set lines 233 TV command 247
deleting from current region (EXCISE command) 156 VT command 252
deleting, replacing, reviewing, or inserting VISAM VV command 254
lines (MODIFY command) 197 WT command 256
DEPROMPT implicit operand 267, 90 DSORG operand
DELETE command 133 DDEF command 129, 285-294
ERASE command 152 DDS? command 145
describing and defining a data set (DDEF command) dummy operand
130, 285 examples 61,74,75
DEVICE operand 267 external string 62
EVV command 154 internal string 62
diagnostic message 10 specification 61
DIAREG implicit operand 267, 85 dump and restore VAM2 disk 142
ABEND command 92 DUMP command 147, 37
DINCR operand 267 dump tapes, printing TSS 218
DATA command 126 dynamic statement
direct call 104. counter 51,97
DISABLE command 134-140 definition 41,3
Disk dump/restore (DMPRST command) 142 deleting (REMOVE command) 231
DISP operand 267 specification 97

DDEF command 285-298
DISPLAY command 140

display module names 239 EBCDIC mode 5-10
displaying commands 179 EDIT command 148, 21
Displaying lines or CLP value (LIST command) 182 editing

DMPRST command 142-144 (see also data set)
DSNAME operand 267 data °

332

text 21
EJECT command 150
eliminating nonconversational task or job
(CANCEL command) 106
ellipsis (Notational symbol) 5
ENABLE command 134, 21
END command 151, 21
ending task, notifying system (LOGOFF command) 190
ENDNO operand
PRINT command 218
PUNCH command 223
WT command 256
entering hexadecimal data 29
Entry from user’s catalog, deleting (DELETE
command) 133
EOB character
command system continuation 281, 11
source list end of block 281
EOB operand 267
MCAST command 193
equivalences, operand 74
ERASE command 152
ERASE operand 267
CATALOG command (Form 2) 107
CDS command 112
PRINT command 218
PUNCH command 223
WT command 256
ERROROPT operand 267
PRINT command 218
EVV command 154,20
EXCERPT command 154, 21
EXCISE command 156, 21
exclamation point (response to attention interruption) 11
EXECUTE command 157,9
execution time, specifying (TIME command) 243
EXHIBIT command 158, 9,298
EXIT command 160
EXPLAIN command 161
explanation message 85
EXPLICIT operand 267
PLI command 208
express mode 36
expression
arithmetic 53
logical 55
undefined 54
extended message 86
external symbol 43
EXTNAME operand 267
BUILTIN command 102

FACTOR operand 267
WT command 256
FILEDEF command 163
FILEREL command 164
filter codes, message 82
floating-point constant 50
folded mode 11,179
FORM operand 267
PRINT command 267,218
PUNCH command 223
FORTRAN compiler 34, 164
FORTRAN control characters
printer 283
punch 284
FORTRAN statement number 43
FROMDEYV operand 267
DMPRST command 142
FRVCLID operand 267
DMPRST command 142
FTN command 164, 34
FTN operand 267
MODIFY command 197
FYNH command 167
full (unfolded) mode 179

GAV command 168
GDG operand 267

CATALOG command (Form 2)
GDV command 169
generation data group, definition 7
generation data sets

catalog 107

generation data group 7

list 37

generation names 7

number 7
generation names, definition 7
GNO operand 267

CATALOG command (Form 2)
GO command 169,
GOTO command 170
GSV command 172

107

107

Halting execution (STOP command) 240

HASM command 172
HEADER operand 267
PRINT command 218
WT command 256
hexadecimal

Index 333

constant 22, 50
data, entering 29
location 49
HEXSW implicit operand 267, 90
CONTEXT command 120
UPDATE command 250
HOLD operand 267
DDEF command 285-298

IF command 175, 37
immediate statement 3, 41
implicit operands 90
INCR operand 267
EDIT command 148
INSERT command 176
NUMBER command 202
REGION command 227
REVISE command 233

information concerning data sets (PC? command) 205

information message 10

initiating or resuming execution (RUN command) 235

input records, concatenating 28
INSERT command 176, 21, 23
inserting, deleting, replacing, or reviewing VISAM
lines (MODIFY command) 197
inserting from data set to data set (EXCERPT
command) 154
inserting terminal-entered lines (UPDATE command)
250
insertion of characters (CORRECT command) 122
INSERTn operand 267
PRMPT command 221
INSTLOC operand 267
BRANCH command 101
instruction location 56
integer constant 49
internal symbol
definition 43
qualification 43, 44
reference to in loaded program 216
subscripted 45
internal symbol dictionary (ISD) 42,43, 56
internal symbols in module, referencing (QUALIFY
command) 226
interruption, attention
(see attention interruption)
INTRAN operand 267
MCASTAB command 195
Introducing nonconversational task to system
(EXECUTE command) 157
invoking Linkage Editor (LNK command) 185
invoking object module or procedure (CALL
command) 104

334

Invoking the assembler (ASM command) 93
invoking the text editor (EDIT command) 148
1/O device 207, 215, 238, 258

releasing 229

reserving 235
ISD 42,43, 56
ISD operand 267

ASM command 93

FTN command 164

LNK command 185
ISDLIST operand 267

ASM command 93

Job library (see JOBLIB)
JOBLIB
copy 112,232
define 285
release 229
JOBLIB operand 267
DDNAME? command 131
JOBLIBS command 178

K, KA, and KB commands 178, 12, 13
KC operand 267

MCAST command 193
KEYLEN operand 267

DDEF command 287

MODIFY command 197
KEYWORD command 179
KEYWORD operand, renaming (SYNONYM

command) 241

KEYWORD operand representation 34
KEYWORD, self-defining 4

LABEL operand 267
DDEF command 285
DMPRST command 142
language processing commands
(see also source language processing)
ASM command 93
FTN command 164
LNK command 185
PLI command 208
terminating processing of (END command) 151
language processor controller
(see also EDIT, PROCDEF, PLI commands)
termination 151
LIB operand 267
LNK command 185
library
job {see JOBLIB)

macro instruction 36
procedure 61
system 88, 61
user (see USERLIB)
LIMEN implicit operand 267, 82,90
limiting execution time (TIME command) 243
LINE? command 180
LINCR operand 267
ASM command 93
FTN command 164
INK command 185
line, definition 7
line data set
{see also data set)
creating 148, 197
definition 22
displaying lines
LINE? command 180
LIST command 182
editing 148, 26
format 22
modifying
(EXCERPT command) 154
EXCISE command 156
INSERT command 176
MODIFY command 197
UPDATE command 250
renumbering
NUMBER command 202
line number
absolute 22
offset 24
prompting 24
relative 22
resolution 23, 24
specification 23, 24
LINE operand 267
LINE? command 180

Line printing of data set (PRINT command) 218

LINENO implicit operand 267, 85
DATA command 126
MODIFY command 197

LINES operand 267
PRINT command 218
WT command 256

lines presented from line data set (LINE? command)

180

lines to be replaced, specifying (REVISE command)

233
link-edit modules, how to 185
link-edited module name 57
LIST command 182

list DDNAMES and associated DSNAMES
(DDNAME? command) 131
LISTDS operand 267
ASM command 93
FTN command 164
LNK command 185
listing data sets, control of 37
LL command 184
LNK command 185
LOAD command 187
LOC operand 267
RUN command 235
LOCATE command 188
locations for post-AT-command command
executions 97
logical expression 55
logical operators 55
LOGOFF command 190
LOGON command 190

‘

LPC commands (see language processor controller)

LPCXPRSS operand 267
ASM command 93
FTN command 164
LNK command 185
LRECL operand 267
DDEF command 285
MODIFY command 197
LTDS command 19,192

MACRODS operand 268

PLI command 208
MACROLIB operand 268

ASM command 93
MAP operand 268

PLI command 208
MCAST command 193
MCASTAB command 195
member name, definition 7
member names and aliases placed on SYSOUT

(POD? command) 215

member processing (CDS command) 112
MERGEDS operand 268

PLI command 208
MERGELST operand 268

PLI command 208
message

classification 10

diagnostic 11

explanation 81

filter codes 82

filtering 81

Index 335

generation 81
identification code 87
information 10
file
construction 82
system 81
user 81
filtering 81
formats
explanation 87
extended 86
response 86
standard 86
word explanation 87
mode 82
reference 83
severity 82
types 84,10
message explanation (EXPLAIN command) 161
message file manipulation and use (PRMPT
command) 221
metasymbols (notational symbols) 4
MINS operand 268
TIME command 243
MMAP operand 268
FTN command 164
MNAME operand 268
QUALIFY command 226
mode, task
conversational 1
nonconversational 15
switching 17
MODIFY command 197, 31
MODREP operand 268
ASM command 93
FTN command 164
LNK command 185
module name, displaying 239
module name, link-edited 57
MODULE operand 268
POD? command 215
moving JOBLIB to logical top of list (JOBLIBS
command) 178
MSGID operand 268
PRMPT command 221
MTT program user connection to (BEGIN
command) 99

N1 operand 268
CONTEXT command 120
CORRECT command 122
EXCERPT command 154

336

EXCISE command 156
INSERT command 176
LIST command 182
LOCATE command 188
NUMBER command 202
REVISE command 233
N2 operand 268
‘CONTEXT command 120
CORRECT command 122
EXCERPT command 154
EXCISE command 156
LIST command 182
LOCATE command 188
NUMBER command 202
REVISE command 233
NAME operand 268
ASM command 93
BUILTIN command 95
CALL command 104
FTN command 164
LNK command 185
LOAD command 187
PLI command 208
PROCDEF command 222
UNLOAD command 249
names
data definition 6
dataset 6
generation 7
member 7
module 57
region 23
NAMES operand 268
DSS? command 145
PC? command 205
NBASE operand 268
NUMBER command 202
nested PROCDEFs 65
nested procedures 67
NEWNAME operand 268
CATALOG command (Form 1) 107
NEWPASWD operand 268
CHGPASS command 116
NEWVLID operand 268
DMPRST command 142
nonconversational SYSIN dataset 15
nonconversational task
ABEND control 17
execution 16
initiation 16, 157
input from card reader 11
output 17
reserving devices for 234

termination 106
normal string 25
notification at specific program locations (AT
command) 97
null value 73
NUMBER command 202

object module, loading into virtual storage (LOAD
command) 187
object module name 57
object program
defining (BUILTIN command) 102
invoking as command (BUILTIN command) 102
operand resolution 103
object program module
call 104, 38
direct call 105
execute 159, 235
interrupt execution 10, 13, 37,97
link 185
load 187,103
modifying 39
name 57
placement in library 35
program control 40-59
qualify internal symbols 226, 43
resume execution 169
run 235,157
stop execution 240
unload 249
OBLIST operand 268
FTN command 164
ODC command 204
offset, character position 24
operand
for system-supplied commands
defaults 6, 13
equivalences 74

field 2
format 4
keyword 3
multiple 2

positional 3
resolution 11
separator 2
synonyms 73
for user-written commands
calling 71
defaults 72,132
dummy 61
equivalences 74
keyword 72
null value 73

positional 71
resolution 75
separator 2
specification 61
substitution 76
synonyms 73
implicit 89
notation
keyword 3-4
position 3-4
operation field 2
operation format 5
operators
arithmetic 53
logical 55
relational 55
OPTION operand 268
DDEF command 285
OPTION1 operand 268
EXHIBIT command 158
0SDD? command 205
OSRUN command 205
Output data set on tape (WT command) 256
OUTRAN operand 268
MCASTAB command 195
OWNERDS operand 268
SHARE command 237

PADCHAR operand 268
PLI command 208
PAGE operand 268
PRINT command 218
WT command 256
PARAM line 61
passwords 116
PC? command 205
PCS commands 40
PCS examples 58
PCS operands, renaming (SYNONYM commands) 241
PCSOUT data set 147, 245
PERMIT command 206
placing data fields in data set (DUMP command) 147
PL/I compiler
introduction 34-57
invoking (PLI command) 208
options 299
PLCOPT operand 268
PLI command 208
PLI command 208
format of output 211
PLIOPT command 213
PLIOPT operand 268
PLI command 208

Index 337

PLIPACK operand 268

PLI command 208
PMDLIST operand 268

ASM command 93

ILNK command 185
POD? command 215
PODNAME operand 268

POD? command 215
positional operand 3-4, 71
POST command 134, 217,21
post-LOGON automatic procedure invocation

(ZLOGON command) 259

PPLI 91
PPLI
COBOL 119, 309
FILEDEF 163

FILEREL 164

FTNH 167,315

HASM 172

ODC 204

OSDD? 205

OSRUN 205

PCS 39

PLIOPT 213,318

restrictions 91
prefixing region name (REGION command) 227
PREXPAND operand 268
PRINT command 218§, 33
printer carriage control codes 283

printing contents and names of data fields (DISPLAY

command) 140
PRISTINE operand (LOGON command) 190
PRMPT command 221
PRMPT macro 81
PROCDEF command 222, 61
(see also command procedure definition)
procedure call 61
procedure library 62, 13
PROCNAME operand 268
KEYWORD command 179
profile, user
(see user profile)
profile character switch table 281, 197
PROFILE command 222, 88, 89
program control
applications 41
commands 40
examples S8
functions 39, 40
program execution, resuming at different location
(BRANCH command) 101
program management commands 34
program module
(see object program module or source program
module)

338

Program Product Language Interface 91
program products supported under TSS 91
PROLIB operand 268
BUILTIN command 102
PROCDEF command 222
prompt character 282
prompting
after EDIT command 148
command system 11
definition 24
line 24
PROCDEF 66
text editor 24
PROTECT operand 268
DDEF command 285
prototype character translation table 266
prototype profile (see user profile)
PRTSP operand 268
PRINT comamand 218
WT command 256
PUBLIC operand 268
FIN command 164
PUNCH command 223, 33
punch control codes 284
PUSH command 225

QUALIFY command 226,40
quoted siring 25, 49

RCC operand 268

MCASTAB command 195
RECFM operand 268

DDEF command 285

MODIFY command 197
record format

line 22

region 24

VISAM variable length 86
reference internal symbols in modules (QUALITY

command) 226

reference message 83
REGION command 227, 21
region, definition 24
region data set

create 228, 24, 26

definition 24, 25

edit 27

example 23

format 25

reco length 28

rég.on name 24, 228

(se2 alsc REGSIZE operand)

register references 49, 52

REGSIZE operand 268 DATA command 126

EDIT command 148 RUN command 235
REJMSG operand 268 RUNMODE operand 268
PLI command 208 DMPRST command 142

relational operators 53
relative generation number, definition 7

relative line number 22 SCOL operand 269
RELEASE command 229 CORRECT command 122
REMOVE command 231 scope, word explanation 87
removing a module (UNLOAD command) 249 search for specified character string (LOCATE
renaming a data set (CATALOG command) 107 command) 188
renaming commands and operands (SYNONYM SECURE command 234
command) 241 self-defining keyword 4
renumbering lines (NUMBER command) 202 semicolon, in command statement 2
REPLACE operand 268 SET command 236
CDS command 112,113 SETNAME operand 269
replacing a string of characters (CONTEXT MODIFY command 187
command) 120 SHARE command 237
replacing existing lines, starting point (REVISE SHARED operand 269
command) 233 ERASE command 152
replacing, reviewing, inserting, or deleting sharing cataloged data sets, restriction or
VISAM lines (MODIFY command) 197 permission (PERMIT command) 206
replacing user profile with task profile (PROFILE shutdown 17
command) 222 SIRTEST operand 269
reserving devices for private volumes (SECURE EXIT command 160
command) 234 PUSH command 225
resource control 10 SLIST operand 269
resources of system, statistics (USAGE command) 251 FTN command 164
response message 85 source language processing
restrict or permit sharing cataloged data sets assemble 93, 34
(PERMIT command) 206 compile 164, 34
resuming execution (GO command) 169 conversational 35
resuming or initiating execution {RUN command) 235 enter statements 34
RET command 231 link edit 185, 34
RET operand 268 listing data set control 37
DDEF command 285 nonconversational 34, 35
RET command 231 print listing 38
retrieving and writing tape data set (TV command) 247 source list, definition 7
retrieving prestored DDEF commands (CDD source list EOB character 281
command) 111 source program module
RETURN key 11 assembly 93, 34
reviewing, inserting, deleting, or replacing VISAM compilation 164, 34
lines (MODIFY command) 197 initiate execution 235
REVISE command 233, 21 modification 35-37
use of 23 prestored 34
RKP operand 268 resume execution 235
DDEF command 285 SOURCEDS operand 269
MODIFY command 197 PLI command 208
RNAME operand 268 SPACE command 239
EDIT command 148 SPACE operand 269
EXCERPT command 154 DDEF command 285
REGION command 227 special graphic characters 281
RTRN command 234 SSM operand 269
RTYPE operand 268 MCAST command 193

Index 339

STACK command 239
STACK operand 269
PUNCH command 223
standard message 84
STARTNO operand 269
PRINT command 218
PUNCH command 223
WT command 256
STATE operand 269
CATALOG command (Form 1) 107
statement number
AT command 97
FORTRAN 97
statistics in system presented to user
(USAGE command) 251
status of cataloged data sets (DSS? command) 145
STEDIT operand 269
FTN command 164
STET command 134-139
storage assigned, freeing of (ERASE command) 152
STORED operand 269
ASM command 93
FTN command 164
LNK command 185
storing VAM data sets on tape (VT command) 252-254
STOP command 240
STRING command 241
string constants
definition 25, 26
display 140
normal 26
quoted 26
STRING operand 269
LOCATE command 188
STRINGI1 operand 269
CONTEXT command 120
STRING2 operand 269
CONTEXT command 120
subscripted symbols 45
switching modes 18, 98
symbol
command 88, 44
external 43
internal 43
reference in loaded module 226
subscripted 45
SYMLIST operand 269
ASM command 93
synonym
calling operands 89
create 241, 89
examples 57
substitution 58
SYNONYM command 241, 88

340

SYSIN
character control 11
data set
conversational 10
nonconversational 15, 262
device control 10
keyboard/card reader switch 282
operand 269
SYSINX 269, 33, 65
SYSINX operand 269, 64
SYSLIB 61
SYSOUT
conversational 15
nonconversational 18
SYSPRX 88
system default values 266-269
system library (SYSLIB) 88, 61
system scope mask 281, 87

tab character
limitation 11
use in command 2,3
tape output of data set (WT command) 256
task, conversational
definition 9
initiation 190
interruption, conversational 13
nonconversational (see nonconversational task)
task management commands 9
task profile
change 88
enter in USERLIB 88
task profile replacing user profile (PROFILE
command) 22
task status, return to post-LOGON (ABEND
command) 92
terminal data placed in current region (INSERT
command) 176
terminal-entered lines, inserting (UPDATE
command) 250
text editing commands 21
text editor
examples 27,28
invocation 26, 60, 148, 228
prompting 24, 30
termination 27, 151
TIME command 243
time-limit for task 10, 243
TODEV operand 269
DMPRST command 142
TOVOLID operand 269
DMPRST command 142
TRANTAB operand 269

transaction table 26 validating user to systern (LOGON command) 190

TRANSLAT command 243 VAM data set, changing attributes of (RET
TRAP command 40, 245 command) 231
TRP operand 269 VAM data set to tape (VT command) 252
MCAST command 193 VAM volume cataloging (EVV command) 154
TSKABEND data set 17 variable addresses 43
TV command 247 VERID operand 269
TYPE operand 269 ASM command 93
CLOSE command 117 FTN command 164
EXHIBIT command 158 LNK command 185
vertical stroke (notational symbol) 4
VISAM data set (see data set)
underscore VISAM or VSAM data set punched into cards
as break character 281 (PUNCH command) 223
as system prompt character 282,11, 13, 19 volume identification 6
UNIT operand 269 VOLUME operand 269
DDEF command 285 DDEF command 285
UNLOAD command 249, 40 EVV command 154
UPDATE command 250, 21 WT command 256
UPDTXFER operand 269 VPAM member
PLI command 208 (see also object program module)
USAGE command 251, 9 copy 111
USAGE command output 302, 303 create 126, 148
user identification 9 request information about 215
user library (see USERLIB) VSAM data set (see data set)
user limits table 10 VSAM data set creation (DATA command) 126
(see also USAGE command) VSAM or VISAM data set punched into cards
user profile (PUNCH command) 223
character switch table 281 VT command 252, 20
definition 88 VV command 254, 20
erase &8
prototype 88
user profile management commands 88 word explanation message 85
user profile replaced by task profile word explanation scope 87
(PROFILE command) 222 WRITCHK operand 269
user prompter 81 DMPRST command 142
user scope mask 87 writing and retrieving tape data set (TV command) 247
user-written commands 60, 222 WT command 256, 33
USERID operand 269
PERMIT command 206 X%, use of 28-30
SHARE command 237 XFERDS operand 269
USERLIB, user profile 88 PLI command 208

using another’s data sets (SHARE command) 237
USM operand 269
MCAST command 193 ZLOGON command 248, 10, 259,9

Index 34}

GC28-2001-9

B

Intemmetional Business Machines Corporation

Data Procsssing Bivision

1133 Waestchesler Avenue, White Plains, New York 10604
(U.SA. eniy)

HBM Werld Trade Cerporation
360 Hamillen Avenue, White Plains, New York 10801
(intornetionat)

S GATEZOD WS Ul Al APIND $,485() WAISAS PUBLIWO) WBlSAS BuleyS swi L ING!

-~
&

